
Jian-Liang Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4645641/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Heavy soil drying during mid-to-late grain filling stage of the main crop to reduce yield loss of the ratoon crop in a mechanized rice ratooning system. Crop Journal, 2022, 10, 280-285.	2.3	25
2	Comparison of yield performance between direct-seeded and transplanted double-season rice using ultrashort-duration varieties in central China. Crop Journal, 2022, 10, 515-523.	2.3	24
3	The Responses of Yield Performance to Seedling Ages with Varied Seeding or Transplanting Dates of Middle-Season Rice in Central China. Journal of Plant Growth Regulation, 2022, 41, 3153-3168.	2.8	2
4	Predicting potential cultivation region and paddy area for ratoon rice production in China using Maxent model. Field Crops Research, 2022, 275, 108372.	2.3	46
5	Effect of stomatal morphology on leaf photosynthetic induction under fluctuating light across diploid and tetraploid rice. Environmental and Experimental Botany, 2022, 194, 104757.	2.0	5
6	Prospects for cotton self-sufficiency in China by closing yield gaps. European Journal of Agronomy, 2022, 133, 126437.	1.9	14
7	Effects of contrasting N supplies on leaf photosynthetic induction under fluctuating light in rice () Tj ETQq1 1 0.	784314 rg 2.6	gBT_/Overlock
8	Biomass, Radiation Use Efficiency, and Nitrogen Utilization of Ratoon Rice Respond to Nitrogen Management in Central China. Frontiers in Plant Science, 2022, 13, 889542.	1.7	4
9	Stem small vascular bundles have greater accumulation and translocation of nonâ€structural carbohydrates than large vascular bundles in rice. Physiologia Plantarum, 2022, 174, e13695.	2.6	3
10	Evaporative flux method of leaf hydraulic conductance estimation: sources of uncertainty and reporting format recommendation. Plant Methods, 2022, 18, 63.	1.9	2
11	Onâ€farm comparison in grain quality between main and ratoon crops of ratoon rice in Hubei Province, Central China. Journal of the Science of Food and Agriculture, 2022, 102, 7259-7267.	1.7	5
12	Effects of skip-row planting on grain yield and quality of mechanized ratoon rice. Field Crops Research, 2022, 285, 108584.	2.3	9
13	Response of spikelet water status to high temperature and its relationship with heat tolerance in rice. Crop Journal, 2021, 9, 1344-1356.	2.3	5
14	Effects of topsoil removal on nitrogen uptake, biomass accumulation, and yield formation in puddled-transplanted rice. Field Crops Research, 2021, 265, 108130.	2.3	5
15	Estimating the yield stability of heat-tolerant rice genotypes under various heat conditions across reproductive stages: a 5-year case study. Scientific Reports, 2021, 11, 13604.	1.6	13
16	Optimized High-Performance Liquid Chromatography Method for Determining Nine Cytokinins, Indole-3-acetic Acid and Abscisic Acid. Sustainability, 2021, 13, 6998.	1.6	8
17	Mesophyll conductance variability of rice aquaporin knockout lines at different growth stages and growing environments. Plant Journal, 2021, 107, 1503-1512.	2.8	14
18	Abnormal anther development leads to lower spikelet fertility in rice (Oryza sativa L.) under high temperature during the panicle initiation stage. BMC Plant Biology, 2021, 21, 428.	1.6	20

#	Article	IF	CITATIONS
19	Leaf photosynthetic plasticity does not predict biomass responses to growth irradiance in rice. Physiologia Plantarum, 2021, 173, 2155-2165.	2.6	5
20	Effects of nitrogen fertilization for bud initiation and tiller growth on yield and quality of rice ratoon crop in central China. Field Crops Research, 2021, 272, 108286.	2.3	32
21	Colorado geoid computation experiment: overview and summary. Journal of Geodesy, 2021, 95, 1.	1.6	36
22	Effect of Stomatal Morphology on Leaf Photosynthetic Induction Under Fluctuating Light in Rice. Frontiers in Plant Science, 2021, 12, 754790.	1.7	7
23	Ratoon rice technology: A green and resource-efficient way for rice production. Advances in Agronomy, 2020, 159, 135-167.	2.4	76
24	Long Wavelength Type II InAs/GaSb Superlattice Photodetector Using Resonant Tunneling Diode Structure. IEEE Electron Device Letters, 2020, 41, 73-75.	2.2	3
25	Intensified pollination and fertilization ameliorate heat injury in rice (Oryza sativa L.) during the flowering stage. Field Crops Research, 2020, 252, 107795.	2.3	32
26	A hot-blast warming facility for simulating global warming in low-stature crop systems and its application case to assess elevated temperature effects on rice in Central China. Plant Methods, 2020, 16, 57.	1.9	3
27	Balancing food production within the planetary water boundary. Journal of Cleaner Production, 2020, 253, 119900.	4.6	29
28	Fast photosynthesis measurements for phenotyping photosynthetic capacity of rice. Plant Methods, 2020, 16, 6.	1.9	12
29	High-performance mid-wavelength InAs avalanche photodiode using AlAs _{0.13} Sb _{0.87} as the multiplication layer. Photonics Research, 2020, 8, 755.	3.4	8
30	Agronomic responses of ratoon rice to nitrogen management in central China. Field Crops Research, 2019, 241, 107569.	2.3	49
31	Modelling rice growth and grain yield in rice ratooning production system. Field Crops Research, 2019, 241, 107574.	2.3	13
32	High nitrogen input causes poor grain filling of spikelets at the panicle base of super hybrid rice. Field Crops Research, 2019, 244, 107635.	2.3	30
33	Enclosed stigma contributes to higher spikelet fertility for rice (Oryza sativa L.) subjected to heat stress. Crop Journal, 2019, 7, 335-349.	2.3	22
34	Suppressing photorespiration for the improvement in photosynthesis and crop yields: A review on the role of S-allantoin as a nitrogen source. Journal of Environmental Management, 2019, 237, 644-651.	3.8	19
35	Closing yield gaps for rice self-sufficiency in China. Nature Communications, 2019, 10, 1725.	5.8	179
36	Source-sink regulation and its effects on the regeneration ability of ratoon rice. Field Crops Research, 2019, 236, 155-164.	2.3	59

#	Article	IF	CITATIONS
37	Can ratoon cropping improve resource use efficiencies and profitability of rice in central China?. Field Crops Research, 2019, 234, 66-72.	2.3	94
38	Optimizing nitrogen management to balance rice yield and environmental risk in the Yangtze River's middle reaches. Environmental Science and Pollution Research, 2019, 26, 4901-4912.	2.7	29
39	Rice Responses and Tolerance to High Temperature. , 2019, , 201-224.		77
40	Nitrogen-mediated alleviation of photosynthetic inhibition under moderate water deficit stress in rice (Oryza sativa L.). Environmental and Experimental Botany, 2019, 157, 269-282.	2.0	32
41	A review for impacts of climate change on rice production in China. Acta Agronomica Sinica(China), 2019, 45, 323.	0.1	12
42	Consequences of high temperature under changing climate optima for rice pollen characteristics-concepts and perspectives. Archives of Agronomy and Soil Science, 2018, 64, 1473-1488.	1.3	126
43	Pursuing sustainable productivity with millions of smallholder farmers. Nature, 2018, 555, 363-366.	13.7	747
44	Nitrogen metabolism correlates with the acclimation of photosynthesis to short-term water stress in rice (Oryza sativa L.). Plant Physiology and Biochemistry, 2018, 125, 52-62.	2.8	63
45	Diffusional conductance to CO ₂ is the key limitation to photosynthesis in saltâ€stressed leaves of rice (<scp><i>Oryza sativa</i></scp>). Physiologia Plantarum, 2018, 163, 45-58.	2.6	59
46	High nitrogen input reduces yield loss from low temperature during the seedling stage in early-season rice. Field Crops Research, 2018, 228, 68-75.	2.3	28
47	Leaf hydraulic vulnerability triggers the decline in stomatal and mesophyll conductance during drought in rice. Journal of Experimental Botany, 2018, 69, 4033-4045.	2.4	108
48	Comparisons of regeneration rate and yields performance between inbred and hybrid rice cultivars in a direct seeding rice-ratoon rice system in central China. Field Crops Research, 2018, 223, 164-170.	2.3	65
49	Low Nitrogen Application Enhances Starch-Metabolizing Enzyme Activity and Improves Accumulation and Translocation of Non-structural Carbohydrates in Rice Stems. Frontiers in Plant Science, 2018, 9, 1128.	1.7	55
50	The Effect of Storage Condition and Duration on the Deterioration of Primed Rice Seeds. Frontiers in Plant Science, 2018, 9, 172.	1.7	55
51	Yield performance of direct-seeded, double-season rice using varieties with short growth durations in central China. Field Crops Research, 2018, 227, 49-55.	2.3	44
52	Integrated crop management practices for maximizing grain yield of double-season rice crop. Scientific Reports, 2017, 7, 38982.	1.6	47
53	Low straw phosphorus concentration is beneficial for high phosphorus use efficiency for grain production in rice recombinant inbred lines. Field Crops Research, 2017, 203, 65-73.	2.3	14
54	The growth and yield of a wet-seeded rice-ratoon rice system in central China. Field Crops Research, 2017, 208, 55-59.	2.3	72

#	Article	IF	CITATIONS
55	Meta-analysis and dose-response analysis of high temperature effects on rice yield and quality. Environmental and Experimental Botany, 2017, 141, 1-9.	2.0	67
56	Agronomic performance of inbred and hybrid rice cultivars under simplified and reduced-input practices. Field Crops Research, 2017, 210, 129-135.	2.3	50
57	The possibility of replacing puddled transplanted flooded rice with dry seeded rice in central China: A review. Field Crops Research, 2017, 214, 310-320.	2.3	56
58	A few enlarged chloroplasts are less efficient in photosynthesis than a large population of small chloroplasts in Arabidopsis thaliana. Scientific Reports, 2017, 7, 5782.	1.6	35
59	Leaf anatomy mediates coordination of leaf hydraulic conductance and mesophyll conductance to <scp>CO</scp> ₂ in <i>Oryza</i> . New Phytologist, 2017, 213, 572-583.	3.5	126
60	Heat-Induced Cytokinin Transportation and Degradation Are Associated with Reduced Panicle Cytokinin Expression and Fewer Spikelets per Panicle in Rice. Frontiers in Plant Science, 2017, 8, 371.	1.7	54
61	Nitrogen Metabolism in Adaptation of Photosynthesis to Water Stress in Rice Grown under Different Nitrogen Levels. Frontiers in Plant Science, 2017, 8, 1079.	1.7	91
62	Crop Production under Drought and Heat Stress: Plant Responses and Management Options. Frontiers in Plant Science, 2017, 8, 1147.	1.7	1,518
63	Limitation of Unloading in the Developing Grains Is a Possible Cause Responsible for Low Stem Non-structural Carbohydrate Translocation and Poor Grain Yield Formation in Rice through Verification of Recombinant Inbred Lines. Frontiers in Plant Science, 2017, 8, 1369.	1.7	52
64	The Effect of Season-Long Temperature Increases on Rice Cultivars Grown in the Central and Southern Regions of China. Frontiers in Plant Science, 2017, 8, 1908.	1.7	84
65	Exogenously Applied Plant Growth Regulators Enhance the Morpho-Physiological Growth and Yield of Rice under High Temperature. Frontiers in Plant Science, 2016, 7, 1250.	1.7	193
66	Comparative Transcriptional Profiling of Primed and Non-primed Rice Seedlings under Submergence Stress. Frontiers in Plant Science, 2016, 7, 1125.	1.7	60
67	Exogenously Applied Plant Growth Regulators Affect Heatâ€Stressed Rice Pollens. Journal of Agronomy and Crop Science, 2016, 202, 139-150.	1.7	220
68	Genetic Improvements in Rice Yield and Concomitant Increases in Radiation- and Nitrogen-Use Efficiency in Middle Reaches of Yangtze River. Scientific Reports, 2016, 6, 21049.	1.6	57
69	Pre-sowing Seed Treatments in Direct-seeded Early Rice: Consequences for Emergence, Seedling Growth and Associated Metabolic Events under Chilling Stress. Scientific Reports, 2016, 6, 19637.	1.6	78
70	Temperature explains the yield difference of double-season rice between tropical and subtropical environments. Field Crops Research, 2016, 198, 303-311.	2.3	34
71	Response of first flood irrigation timing after rice dry-direct-seeding: Productivity and greenhouse gas emissions in Central China. Agricultural Water Management, 2016, 177, 241-247.	2.4	16
72	Heat-induced phytohormone changes are associated with disrupted early reproductive development and reduced yield in rice. Scientific Reports, 2016, 6, 34978.	1.6	116

#	Article	IF	CITATIONS
73	Leaf density explains variation in leaf mass per area in rice between cultivars and nitrogen treatments. Annals of Botany, 2016, 117, 963-971.	1.4	39
74	A combined application of biochar and phosphorus alleviates heat-induced adversities on physiological, agronomical and quality attributes of rice. Plant Physiology and Biochemistry, 2016, 103, 191-198.	2.8	256
75	Seed priming in dry direct-seeded rice: consequences for emergence, seedling growth and associated metabolic events under drought stress. Plant Growth Regulation, 2016, 78, 167-178.	1.8	169
76	Overexpression of OsSAP16 Regulates Photosynthesis and the Expression of a Broad Range of Stress Response Genes in Rice (Oryza sativa L.). PLoS ONE, 2016, 11, e0157244.	1.1	14
77	Responses of Rapid Viscoanalyzer Profile and Other Rice Grain Qualities to Exogenously Applied Plant Growth Regulators under High Day and High Night Temperatures. PLoS ONE, 2016, 11, e0159590.	1.1	150
78	Premature heading and yield losses caused by prolonged seedling age in double cropping rice. Field Crops Research, 2015, 183, 147-155.	2.3	18
79	SPAD-based leaf nitrogen estimation is impacted by environmental factors and crop leaf characteristics. Scientific Reports, 2015, 5, 13389.	1.6	233
80	Quantifying atmospheric nitrogen deposition through a nationwide monitoring network across China. Atmospheric Chemistry and Physics, 2015, 15, 12345-12360.	1.9	324
81	Exploiting Co-Benefits of Increased Rice Production and Reduced Greenhouse Gas Emission through Optimized Crop and Soil Management. PLoS ONE, 2015, 10, e0140023.	1.1	15
82	Crop Plant Hormones and Environmental Stress. Sustainable Agriculture Reviews, 2015, , 371-400.	0.6	196
83	Heterogeneity of photosynthesis within leaves is associated with alteration of leaf structural features and leaf N content per leaf area in rice. Functional Plant Biology, 2015, 42, 687.	1.1	32
84	Effects of tire rubber ash and zinc sulfate on crop productivity and cadmium accumulation in five rice cultivars under field conditions. Environmental Science and Pollution Research, 2015, 22, 12424-12434.	2.7	58
85	Dry direct-seeded rice as an alternative to transplanted-flooded rice in Central China. Agronomy for Sustainable Development, 2015, 35, 285-294.	2.2	197
86	Weed growth and crop yield loss in wheat as influenced by row spacing and weed emergence times. Crop Protection, 2015, 71, 101-108.	1.0	82
87	Sufficient leaf transpiration and nonstructural carbohydrates are beneficial for high-temperature tolerance in three rice (Oryza sativa) cultivars and two nitrogen treatments. Functional Plant Biology, 2015, 42, 347.	1.1	36
88	Benefits of rice seed priming are offset permanently by prolonged storage and the storage conditions. Scientific Reports, 2015, 5, 8101.	1.6	115
89	Influence of temperature and solar radiation on grain yield and quality in irrigated rice system. European Journal of Agronomy, 2015, 64, 37-46.	1.9	100
90	Leaf hydraulic conductance is coordinated with leaf morpho-anatomical traits and nitrogen status in the genus Oryza. Journal of Experimental Botany, 2015, 66, 741-748.	2.4	91

#	Article	IF	CITATIONS
91	Drought stress condition increases root to shoot ratio via alteration of carbohydrate partitioning and enzymatic activity in rice seedlings. Acta Physiologiae Plantarum, 2015, 37, 1.	1.0	221
92	Grain Cadmium and Zinc Concentrations in Maize Influenced by Genotypic Variations and Zinc Fertilization. Clean - Soil, Air, Water, 2015, 43, 1433-1440.	0.7	53
93	Rice Pest Management and Biological Control. Sustainable Agriculture Reviews, 2015, , 85-106.	0.6	20
94	Implications of low sowing rate for hybrid rice varieties under dry direct-seeded rice system in Central China. Field Crops Research, 2015, 175, 87-95.	2.3	37
95	Rice sheath blight evaluation as affected by fertilization rate and planting density. Australasian Plant Pathology, 2015, 44, 183-189.	0.5	18
96	Rapid responses of mesophyll conductance to changes of <scp><scp>CO₂</scp></scp> concentration, temperature and irradiance are affected by <scp>N</scp> supplements in rice. Plant, Cell and Environment, 2015, 38, 2541-2550.	2.8	137
97	Crop management based on multi-split topdressing enhances grain yield and nitrogen use efficiency in irrigated rice in China. Field Crops Research, 2015, 184, 50-57.	2.3	88
98	A biochar application protects rice pollen from high-temperature stress. Plant Physiology and Biochemistry, 2015, 96, 281-287.	2.8	170
99	Phytohormones and plant responses to salinity stress: a review. Plant Growth Regulation, 2015, 75, 391-404.	1.8	566
100	Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: consequences for changing environment. Environmental Science and Pollution Research, 2015, 22, 4907-4921.	2.7	459
101	Rice management interventions to mitigate greenhouse gas emissions: a review. Environmental Science and Pollution Research, 2015, 22, 3342-3360.	2.7	166
102	Recent developments in therapeutic protein expression technologies in plants. Biotechnology Letters, 2015, 37, 265-279.	1.1	50
103	Dry Matter and N Contributions to the Formation of Sink Size in Early- and Late-maturing Rice under Various N Rates in Central China. International Journal of Agriculture and Biology, 2015, 18, 46-51.	0.2	3
104	The Role of Antioxidant Enzymes in Adaptive Responses to Sheath Blight Infestation under Different Fertilization Rates and Hill Densities. Scientific World Journal, The, 2014, 2014, 1-8.	0.8	16
105	Water Management Practices Affect Arsenic and Cadmium Accumulation in Rice Grains. Scientific World Journal, The, 2014, 2014, 1-6.	0.8	16
106	Identification of quantitative trait loci for phosphorus use efficiency traits in rice using a high density SNP map. BMC Genetics, 2014, 15, 155.	2.7	26
107	Rice grain yield and component responses to near 2°C of warming. Field Crops Research, 2014, 157, 98-110.	2.3	68
108	Disease resistance in rice and the role of molecular breeding in protecting rice crops against diseases. Biotechnology Letters, 2014, 36, 1407-1420.	1.1	25

#	Article	IF	CITATIONS
109	Producing more grain with lower environmental costs. Nature, 2014, 514, 486-489.	13.7	1,292
110	Potentially toxic elements concentration in milled rice differ among various planting patterns. Field Crops Research, 2014, 168, 19-26.	2.3	29
111	Grain yield and nitrogen use efficiency responses to N application in Bt (Cry1Ab/Ac) transgenic two-line hybrid rice. Field Crops Research, 2014, 155, 184-191.	2.3	19
112	Varietal difference in the response of rice chalkiness to temperature during ripening phase across different sowing dates. Field Crops Research, 2013, 151, 85-91.	2.3	32
113	Toward yield improvement of early-season rice: Other options under double rice-cropping system in central China. European Journal of Agronomy, 2013, 45, 75-86.	1.9	61
114	Plant growth suppression due to sheath blight and the associated yield reduction under double rice-cropping system in central China. Field Crops Research, 2013, 144, 268-280.	2.3	15
115	Synergic Effect of Flooding and Nitrogen Application on Alleviation of Soil Sickness Caused by Aerobic Rice Monocropping. Plant Production Science, 2012, 15, 246-251.	0.9	3
116	QTL mapping for nitrogen-use efficiency and nitrogen-deficiency tolerance traits in rice. Plant and Soil, 2012, 359, 281-295.	1.8	79
117	Aerobic rice for water-saving agriculture. A review. Agronomy for Sustainable Development, 2012, 32, 411-418.	2.2	71
118	Yield differences between Bt transgenic rice lines and their non-Bt counterparts, and its possible mechanism. Field Crops Research, 2012, 126, 8-15.	2.3	35
119	Agronomic performance of high-yielding rice variety grown under alternate wetting and drying irrigation. Field Crops Research, 2012, 126, 16-22.	2.3	229
120	Sheath blight reduces stem breaking resistance and increases lodging susceptibility of rice plants. Field Crops Research, 2012, 128, 101-108.	2.3	87
121	Effects of N treatments on the yield advantage of Bt-SY63 over SY63 (Oryza sativa) and the concentration of Bt protein. Field Crops Research, 2012, 129, 39-45.	2.3	26
122	Relationships of nonâ€structural carbohydrates accumulation and translocation with yield formation in rice recombinant inbred lines under two nitrogen levels. Physiologia Plantarum, 2011, 141, 321-331.	2.6	74
123	Improving nitrogen fertilization in rice by sitespecific N management. A review. Agronomy for Sustainable Development, 2010, 30, 649-656.	2.2	436
124	Alleviating soil sickness caused by aerobic monocropping: Responses of aerobic rice to various nitrogen sources. Soil Science and Plant Nutrition, 2009, 55, 150-159.	0.8	23
125	Improvement in nitrogen availability, nitrogen uptake and growth of aerobic rice following soil acidification. Soil Science and Plant Nutrition, 2009, 55, 705-714.	0.8	24

126 Mapping QTLs for seedling characteristics under different water supply conditions in rice (<i>Oryza) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5

#	Article	IF	CITATIONS
127	Determination of optimal nitrogen rate for rice varieties using a chlorophyll meter. Field Crops Research, 2008, 105, 70-80.	2.3	139
128	Alleviating soil sickness caused by aerobic monocropping: responses of aerobic rice to soil oven-heating. Plant and Soil, 2007, 300, 185-195.	1.8	21
129	Strategies for overcoming low agronomic nitrogen use efficiency in irrigated rice systems in China. Field Crops Research, 2006, 96, 37-47.	2.3	484
130	Rice yields decline with higher night temperature from global warming. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 9971-9975.	3.3	1,859