
Simon Mitternacht

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4645584/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	FreeSASA: An open source C library for solvent accessible surface area calculations. F1000Research, 2016, 5, 189.	1.6	294
2	Unraveling Hidden Regulatory Sites in Structurally Homologous Metalloproteases. Journal of Molecular Biology, 2013, 425, 2330-2346.	4.2	52
3	Mechanical Resistance in Unstructured Proteins. Biophysical Journal, 2013, 104, 2725-2732.	0.5	15
4	SPACER: server for predicting allosteric communication and effects of regulation. Nucleic Acids Research, 2013, 41, W266-W272.	14.5	88
5	Monte Carlo Study of the Formation and Conformational Properties of Dimers of AÎ ² 42 Variants. Journal of Molecular Biology, 2011, 410, 357-367.	4.2	50
6	On the Importance of Amino Acid Sequence and Spatial Proximity of Interacting Residues for Protein Folding. Journal of Biomolecular Structure and Dynamics, 2011, 28, 607-609.	3.5	2
7	Coherent Conformational Degrees of Freedom as a Structural Basis for Allosteric Communication. PLoS Computational Biology, 2011, 7, e1002301.	3.2	44
8	A geometry-based generic predictor for catalytic and allosteric sites. Protein Engineering, Design and Selection, 2011, 24, 405-409.	2.1	29
9	Binding Leverage as a Molecular Basis for Allosteric Regulation. PLoS Computational Biology, 2011, 7, e1002148.	3.2	76
10	Protein folding, aggregation and unfolding in Monte Carlo simulations. Physics Procedia, 2010, 7, 68-71.	1.2	1
11	Comparing the folding freeâ€energy landscapes of Aβ42 variants with different aggregation properties. Proteins: Structure, Function and Bioinformatics, 2010, 78, 2600-2608.	2.6	45
12	Unfolding times for proteins in a force clamp. Physical Review E, 2010, 81, 010902.	2.1	16
13	An effective all-atom potential for proteins. PMC Biophysics, 2009, 2, 2.	2.3	63
14	Changing the Mechanical Unfolding Pathway of FnIII10 by Tuning the Pulling Strength. Biophysical Journal, 2009, 96, 429-441.	0.5	42
15	Spontaneous βâ€barrel formation: An allâ€atom Monte Carlo study of Aβ _{16–22} oligomerization. Proteins: Structure, Function and Bioinformatics, 2008, 71, 207-214.	2.6	52
16	Differences in Solution Behavior among Four Semiconductor-Binding Peptides. Journal of Physical Chemistry B, 2007, 111, 4355-4360.	2.6	11
17	Thermal versus mechanical unfolding of ubiquitin. Proteins: Structure, Function and Bioinformatics, 2006, 65, 759-766.	2.6	28
18	Dissecting the mechanical unfolding of ubiquitin. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 13427-13432.	7.1	70