
Ryuhei Hayashi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4645557/publications.pdf Version: 2024-02-01

Ρνιιμει Ηλγλομι

#	Article	IF	CITATIONS
1	Co-ordinated ocular development from human iPS cells and recovery of corneal function. Nature, 2016, 531, 376-380.	27.8	191
2	Generation of Corneal Epithelial Cells from Induced Pluripotent Stem Cells Derived from Human Dermal Fibroblast and Corneal Limbal Epithelium. PLoS ONE, 2012, 7, e45435.	2.5	135
3	N-Cadherin Is Expressed by Putative Stem/Progenitor Cells and Melanocytes in the Human Limbal Epithelial Stem Cell Niche. Stem Cells, 2007, 25, 289-296.	3.2	132
4	A Novel Gelatin Hydrogel Carrier Sheet for Corneal Endothelial Transplantation. Tissue Engineering - Part A, 2011, 17, 2213-2219.	3.1	97
5	Coordinated generation of multiple ocular-like cell lineages and fabrication of functional corneal epithelial cell sheets from human iPS cells. Nature Protocols, 2017, 12, 683-696.	12.0	83
6	Identification and Potential Application of Human Corneal Endothelial Progenitor Cells. Stem Cells and Development, 2014, 23, 2190-2201.	2.1	59
7	Enrichment of corneal epithelial stem/progenitor cells using cell surface markers, integrin α6 and CD71. Biochemical and Biophysical Research Communications, 2008, 367, 256-263.	2.1	57
8	The role of the Nrf2-mediated defense system in corneal epithelial wound healing. Free Radical Biology and Medicine, 2013, 61, 333-342.	2.9	44
9	PAX6 Isoforms, along with Reprogramming Factors, Differentially Regulate the Induction of Cornea-specific Genes. Scientific Reports, 2016, 6, 20807.	3.3	39
10	Selective Laminin-Directed Differentiation of Human Induced Pluripotent Stem Cells into Distinct Ocular Lineages. Cell Reports, 2018, 25, 1668-1679.e5.	6.4	39
11	A novel method of culturing human oral mucosal epithelial cell sheet using post-mitotic human dermal fibroblast feeder cells and modified keratinocyte culture medium for ocular surface reconstruction. British Journal of Ophthalmology, 2010, 94, 1244-1250.	3.9	38
12	Validation System of Tissue-Engineered Epithelial Cell Sheets for Corneal Regenerative Medicine. Tissue Engineering - Part C: Methods, 2010, 16, 553-560.	2.1	35
13	Neural crest-derived multipotent cells in the adult mouse iris stroma. Genes To Cells, 2011, 16, 273-281.	1.2	35
14	Analysis of angiogenesis induced by cultured corneal and oral mucosal epithelial cell sheets in vitro. Experimental Eye Research, 2007, 85, 772-781.	2.6	33
15	Human adipose tissue-derived mesenchymal stem cells as a novel feeder layer for epithelial cells. Journal of Tissue Engineering and Regenerative Medicine, 2008, 2, 445-449.	2.7	27
16	A Self-Assembling Peptide Gel as a Vitreous Substitute: A Rabbit Study. , 2017, 58, 4068.		24
17	CD200 facilitates the isolation of corneal epithelial cells derived from human pluripotent stem cells. Scientific Reports, 2018, 8, 16550.	3.3	24
18	Induction of putative stratified epithelial progenitor cells in vitro from mouse-induced pluripotent stem cells. Journal of Artificial Organs, 2011, 14, 58-66.	0.9	23

Ryuhei Hayashi

#	Article	IF	CITATIONS
19	Development of a Cell Sheet Transportation Technique for Regenerative Medicine. Tissue Engineering - Part C: Methods, 2014, 20, 373-382.	2.1	23
20	Analysis of soluble vascular endothelial growth factor receptor-1 secreted from cultured corneal and oral mucosal epithelial cell sheets in vitro. British Journal of Ophthalmology, 2009, 93, 263-267.	3.9	19
21	KLF4 prevents epithelial to mesenchymal transition in human corneal epithelial cells via endogenous TGF-β2 suppression. Regenerative Therapy, 2019, 11, 249-257.	3.0	19
22	Generation of 3D lacrimal gland organoids from human pluripotent stem cells. Nature, 2022, 605, 126-131.	27.8	18
23	Maintenance and Distribution of Epithelial Stem/Progenitor Cells after Corneal Reconstruction Using Oral Mucosal Epithelial Cell Sheets. PLoS ONE, 2014, 9, e110987.	2.5	17
24	Generation of functional conjunctival epithelium, including goblet cells, from human iPSCs. Cell Reports, 2021, 34, 108715.	6.4	17
25	The secretome of adipose-derived mesenchymal stem cells attenuates epithelial–mesenchymal transition in human corneal epithelium. Regenerative Therapy, 2019, 11, 114-122.	3.0	15
26	Molecular and Cellular Features of Murine Craniofacial and Trunk Neural Crest Cells as Stem Cell-Like Cells. PLoS ONE, 2014, 9, e84072.	2.5	15
27	Validation of Na,K-ATPase Pump Function of Corneal Endothelial Cells for Corneal Regenerative Medicine. Tissue Engineering - Part C: Methods, 2013, 19, 901-910.	2.1	14
28	Localization and osteoblastic differentiation potential of neural crest-derived cells in oral tissues of adult mice. Biochemical and Biophysical Research Communications, 2015, 464, 1209-1214.	2.1	14
29	Ocular surface ectoderm instigated by WNT inhibition and BMP4. Stem Cell Research, 2020, 46, 101868.	0.7	14
30	Generation of knockout rabbits with X-linked severe combined immunodeficiency (X-SCID) using CRISPR/Cas9. Scientific Reports, 2020, 10, 9957.	3.3	12
31	Cell-Type-Specific Adhesiveness and Proliferation Propensity on Laminin Isoforms Enable Purification of iPSC-Derived Corneal Epithelium. Stem Cell Reports, 2020, 14, 663-676.	4.8	12
32	Spontaneous acquisition of infinite proliferative capacity by a rabbit corneal endothelial cell line with maintenance of phenotypic and physiological characteristics. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 1057-1064.	2.7	11
33	Ebselen Preserves Tissue-Engineered Cell Sheets and their Stem Cells in Hypothermic Conditions. Scientific Reports, 2016, 6, 38987.	3.3	10
34	Chondroitin Sulfate as a Potential Modulator of the Stem Cell Niche in Cornea. Frontiers in Cell and Developmental Biology, 2020, 8, 567358.	3.7	10
35	High-resolution promoter map of human limbal epithelial cells cultured with keratinocyte growth factor and rho kinase inhibitor. Scientific Reports, 2017, 7, 2845.	3.3	9
36	PAX6-positive microglia evolve locally in hiPSC-derived ocular organoids. Stem Cell Reports, 2022, 17, 221-230.	4.8	9

Ryuhei Hayashi

#	Article	IF	CITATIONS
37	Histological evaluation of mechanical epithelial separation in epithelial laser in situ keratomileusis. Journal of Cataract and Refractive Surgery, 2009, 35, 1251-1259.	1.5	8
38	A New in Vitro Model of GDLD by Knocking Out <i>TACSTD2</i> and Its Paralogous Gene <i>EpCAM</i> in Human Corneal Epithelial Cells. Translational Vision Science and Technology, 2018, 7, 30.	2.2	7
39	Human iPS cells engender corneal epithelial stem cells with holoclone-forming capabilities. IScience, 2021, 24, 102688.	4.1	7
40	Generation of a TALEN-mediated, p63 knock-in in human induced pluripotent stem cells. Stem Cell Research, 2017, 25, 256-265.	0.7	4
41	Generation and validation of a PITX2–EGFP reporter line of human induced pluripotent stem cells enables isolation of periocular mesenchymal cells. Journal of Biological Chemistry, 2020, 295, 3456-3465.	3.4	4
42	Long-term survival in non-human primates of stem cell-derived, MHC-unmatched corneal epithelial cell sheets. Stem Cell Reports, 2022, 17, 1714-1729.	4.8	4
43	Use of homeobox gene expression patterns to determine anatomical regions of origin for body surface tissues derived from adult mice. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 1412-1419.	2.7	2