Phillip Lord

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4645458/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The minimum information about a genome sequence (MIGS) specification. Nature Biotechnology, 2008, 26, 541-547.	17.5	1,069
2	Semantic Similarity in Biomedical Ontologies. PLoS Computational Biology, 2009, 5, e1000443.	3.2	627
3	Promoting coherent minimum reporting guidelines for biological and biomedical investigations: the MIBBI project. Nature Biotechnology, 2008, 26, 889-896.	17.5	506
4	Taverna: lessons in creating a workflow environment for the life sciences. Concurrency Computation Practice and Experience, 2006, 18, 1067-1100.	2.2	485
5	The Ontology for Biomedical Investigations. PLoS ONE, 2016, 11, e0154556.	2.5	217
6	Modeling biomedical experimental processes with OBI. Journal of Biomedical Semantics, 2010, 1, S7.	1.6	207
7	Minimum Information about a Cardiac Electrophysiology Experiment (MICEE): Standardised reporting for model reproducibility, interoperability, and data sharing. Progress in Biophysics and Molecular Biology, 2011, 107, 4-10.	2.9	75
8	Clinical Use of Tolerogenic Dendritic Cells-Harmonization Approach in European Collaborative Effort. Mediators of Inflammation, 2015, 2015, 1-8.	3.0	57
9	Minimum information about tolerogenic antigen-presenting cells (MITAP): a first step towards reproducibility and standardisation of cellular therapies. PeerJ, 2016, 4, e2300.	2.0	55
10	Minimum Information about T Regulatory Cells: A Step toward Reproducibility and Standardization. Frontiers in Immunology, 2017, 8, 1844.	4.8	43
11	Understanding and using the meaning of statements in a bio-ontology: recasting the Gene Ontology in OWL. BMC Bioinformatics, 2007, 8, 57.	2.6	37
12	Adding a Little Reality to Building Ontologies for Biology. PLoS ONE, 2010, 5, e12258.	2.5	24
13	Data Integration and Mining for Synthetic Biology Design. ACS Synthetic Biology, 2016, 5, 1086-1097.	3.8	23
14	Recycling workflows and services through discovery and reuse. Concurrency Computation Practice and Experience, 2007, 19, 181-194.	2.2	19
15	Annotation of SBML models through rule-based semantic integration. Journal of Biomedical Semantics, 2010, 1, S3.	1.6	16
16	GOHSE: Ontology driven linking of biology resources. Web Semantics, 2006, 4, 155-163.	2.9	14
17	SBOL-OWL: An Ontological Approach for Formal and Semantic Representation of Synthetic Biology Information. ACS Synthetic Biology, 2019, 8, 1498-1514.	3.8	12
18	Knowledge Discovery for Biology with Taverna. , 2007, , 355-395.		12

Phillip Lord

#	Article	IF	CITATIONS
19	Bayesian integration of networks without gold standards. Bioinformatics, 2012, 28, 1495-1500.	4.1	11
20	Application of Ontologies in Bioinformatics. , 2009, , 735-756.		10
21	An approach to describing and analysing bulk biological annotation quality: a case study using UniProtKB. Bioinformatics, 2012, 28, i562-i568.	4.1	10
22	Customizable views on semantically integrated networks for systems biology. Bioinformatics, 2011, 27, 1299-1306.	4.1	9
23	Can Inferred Provenance and Its Visualisation Be Used to Detect Erroneous Annotation? A Case Study Using UniProtKB. PLoS ONE, 2013, 8, e75541.	2.5	9
24	Modeling and Managing Experimental Data Using FuGE. OMICS A Journal of Integrative Biology, 2009, 13, 239-251.	2.0	8
25	On patterns and re-use in bioinformatics databases. Bioinformatics, 2017, 33, 2731-2736.	4.1	6
26	A document-centric approach for developing the tolAPC ontology. Journal of Biomedical Semantics, 2017, 8, 54.	1.6	4
27	An evolutionary approach to Function. Journal of Biomedical Semantics, 2010, 1, S4.	1.6	3
28	Selected papers from the 12th annual Bio-Ontologies meeting. Journal of Biomedical Semantics, 2010, 1, l1.	1.6	2
29	ISMB 2003 Bio-ontologies SIG and Sixth Annual Bio-ontologies Meeting Report. Comparative and Functional Genomics, 2003, 4, 663-666.	2.0	1
30	Using Distributed Data and Tools in Bioinformatics Applications. , 0, , 1627-1650.		1
31	An evolutionary approach to Function. Nature Precedings, 2009, , .	0.1	1
32	Three Steps to Heaven: Semantic Publishing in a Real World Workflow. Future Internet, 2012, 4, 1004-1015.	3.8	1
33	Ontology in Immunology. Transplantation, 2016, 100, 2014-2015.	1.0	0
34	A fully computational and reasonable representation for karyotypes. Bioinformatics, 2019, 35, 5264-5270.	4.1	0