Venkatraman Ramakrishnan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4645255/publications.pdf Version: 2024-02-01

		8732	7496
165	26,224	75	151
papers	citations	h-index	g-index
173	173	173	14395
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	My Memories of Alexander Spirin. Biochemistry (Moscow), 2021, 86, 908-909.	0.7	Ο
2	Visualizing formation of the active site in the mitochondrial ribosome. ELife, 2021, 10, .	2.8	22
3	Elongational stalling activates mitoribosome-associated quality control. Science, 2020, 370, 1105-1110.	6.0	74
4	Structure of a human 48 <i>S</i> translational initiation complex. Science, 2020, 369, 1220-1227.	6.0	138
5	Royal Society president stands up for Chinese scientists in the United States. Nature, 2019, 571, 326-326.	13.7	0
6	Academies' action plan for germline editing. Nature, 2019, 567, 175-175.	13.7	14
7	Structural basis for the inhibition of translation through eIF2α phosphorylation. Nature Communications, 2019, 10, 2640.	5.8	62
8	How a circularized tmRNA moves through the ribosome. Science, 2019, 363, 740-744.	6.0	34
9	Mechanism of ribosome stalling during translation of a poly(A) tail. Nature Structural and Molecular Biology, 2019, 26, 1132-1140.	3.6	114
10	Thomas A. Steitz (1940–2018). Science, 2018, 362, 897-897.	6.0	0
11	ZNF598 Is a Quality Control Sensor of Collided Ribosomes. Molecular Cell, 2018, 72, 469-481.e7.	4.5	294
12	Translational initiation factor eIF5 replaces eIF1 on the 40S ribosomal subunit to promote start-codon recognition. ELife, 2018, 7, .	2.8	76
13	Visualizing tmRNA Entry into a Stalled Ribosome. journal of hand surgery Asian-Pacific volume, The, 2018, , 335-338.	0.2	0
14	The structure of the yeast mitochondrial ribosome. Science, 2017, 355, 528-531.	6.0	161
15	Structures of the human mitochondrial ribosome in native states of assembly. Nature Structural and Molecular Biology, 2017, 24, 866-869.	3.6	140
16	Pro-science budget is not enough for a Brexit world. Nature, 2017, 551, 543-543.	13.7	2
17	Structural characterization of ribosome recruitment and translocation by type IV IRES. ELife, 2016, 5, .	2.8	82
18	Translational termination without a stop codon. Science, 2016, 354, 1437-1440.	6.0	72

#	Article	IF	CITATIONS
19	Ribosome-dependent activation of stringent control. Nature, 2016, 534, 277-280.	13.7	200
20	Large-Scale Movements of IF3 and tRNA during Bacterial Translation Initiation. Cell, 2016, 167, 133-144.e13.	13.5	135
21	Decoding Mammalian Ribosome-mRNA States by Translational GTPase Complexes. Cell, 2016, 167, 1229-1240.e15.	13.5	191
22	Bactobolin A Binds to a Site on the 70S Ribosome Distinct from Previously Seen Antibiotics. Journal of Molecular Biology, 2015, 427, 753-755.	2.0	48
23	Structural basis for stop codon recognition in eukaryotes. Nature, 2015, 524, 493-496.	13.7	237
24	The structure of the human mitochondrial ribosome. Science, 2015, 348, 95-98.	6.0	432
25	Conformational Differences between Open and Closed States of the Eukaryotic Translation Initiation Complex. Molecular Cell, 2015, 59, 399-412.	4.5	195
26	The Diamond Light Source and the challenges ahead for structural biology: some informal remarks. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2015, 373, 20130156.	1.6	3
27	Structural Changes Enable Start Codon Recognition by the Eukaryotic Translation Initiation Complex. Cell, 2014, 159, 597-607.	13.5	173
28	The Ribosome Emerges from a Black Box. Cell, 2014, 159, 979-984.	13.5	104
29	A new system for naming ribosomal proteins. Current Opinion in Structural Biology, 2014, 24, 165-169.	2.6	481
30	Structure of the Yeast Mitochondrial Large Ribosomal Subunit. Science, 2014, 343, 1485-1489.	6.0	521
31	Initiation of Translation by Cricket Paralysis Virus IRES Requires Its Translocation in the Ribosome. Cell, 2014, 157, 823-831.	13.5	211
32	4′-O-substitutions determine selectivity of aminoglycoside antibiotics. Nature Communications, 2014, 5, 3112.	5.8	68
33	Structure of the large ribosomal subunit from human mitochondria. Science, 2014, 346, 718-722.	6.0	260
34	Structure of the Yeast Mitochondrial Large Ribosomal Subunit. Microscopy and Microanalysis, 2014, 20, 1252-1253.	0.2	1
35	The ribosome triggers the stringent response by RelA via a highly distorted tRNA. EMBO Reports, 2013, 14, 811-816.	2.0	52
36	Crystal Structure of a Bioactive Pactamycin Analog Bound to the 30S Ribosomal Subunit. Journal of Molecular Biology, 2013, 425, 3907-3910.	2.0	21

#	Article	IF	CITATIONS
37	Elongation Factor G Bound to the Ribosome in an Intermediate State of Translocation. Science, 2013, 340, 1235490.	6.0	192
38	Molecular Architecture of a Eukaryotic Translational Initiation Complex. Science, 2013, 342, 1240585.	6.0	120
39	Unusual base pairing during the decoding of a stop codon by the ribosome. Nature, 2013, 500, 107-110.	13.7	135
40	Structural Basis of the Translational Elongation Cycle. Annual Review of Biochemistry, 2013, 82, 203-236.	5.0	240
41	The structural basis for specific decoding of AUA by isoleucine tRNA on the ribosome. Nature Structural and Molecular Biology, 2013, 20, 641-643.	3.6	34
42	Dissociation of antibacterial activity and aminoglycoside ototoxicity in the 4-monosubstituted 2-deoxystreptamine apramycin. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 10984-10989.	3.3	185
43	Decoding in the Absence of a Codon by tmRNA and SmpB in the Ribosome. Science, 2012, 335, 1366-1369.	6.0	97
44	Ribosome engineering to promote new crystal forms. Acta Crystallographica Section D: Biological Crystallography, 2012, 68, 578-583.	2.5	26
45	The Eukaryotic Ribosome. Science, 2011, 331, 681-682.	6.0	20
46	How mutations in tRNA distant from the anticodon affect the fidelity of decoding. Nature Structural and Molecular Biology, 2011, 18, 432-436.	3.6	109
47	Profile of Venkatraman Ramakrishnan. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 15676-15678.	3.3	0
48	Response to Comment on "The Mechanism for Activation of GTP Hydrolysis on the Ribosome― Science, 2011, 333, 37-37.	6.0	29
49	Crystal structure of the hybrid state of ribosome in complex with the guanosine triphosphatase release factor 3. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 15798-15803.	3.3	80
50	Unraveling the Structure of the Ribosome (Nobel Lecture). Angewandte Chemie - International Edition, 2010, 49, 4355-4380.	7.2	64
51	Structural basis for 16S ribosomal RNA cleavage by the cytotoxic domain of colicin E3. Nature Structural and Molecular Biology, 2010, 17, 1241-1246.	3.6	44
52	Structure of the 70S ribosome bound to release factor 2 and a substrate analog provides insights into catalysis of peptide release. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8593-8598.	3.3	98
53	Modification of 16S ribosomal RNA by the KsgA methyltransferase restructures the 30S subunit to optimize ribosome function. Rna, 2010, 16, 2319-2324.	1.6	87
54	The Mechanism for Activation of GTP Hydrolysis on the Ribosome. Science, 2010, 330, 835-838.	6.0	318

#	Article	IF	CITATIONS
55	GTPase activation of elongation factor EF-Tu by the ribosome during decoding. EMBO Journal, 2009, 28, 755-765.	3.5	175
56	What recent ribosome structures have revealed about the mechanism of translation. Nature, 2009, 461, 1234-1242.	13.7	597
57	Insights into substrate stabilization from snapshots of the peptidyl transferase center of the intact 70S ribosome. Nature Structural and Molecular Biology, 2009, 16, 528-533.	3.6	335
58	The Crystal Structure of the Ribosome Bound to EF-Tu and Aminoacyl-tRNA. Science, 2009, 326, 688-694.	6.0	481
59	The Structural Basis for mRNA Recognition and Cleavage by the Ribosome-Dependent Endonuclease RelE. Cell, 2009, 139, 1084-1095.	13.5	194
60	The Structure of the Ribosome with Elongation Factor G Trapped in the Posttranslocational State. Science, 2009, 326, 694-699.	6.0	465
61	The Ribosome: Some Hard Facts about Its Structure and Hot Air about Its Evolution. Cold Spring Harbor Symposia on Quantitative Biology, 2009, 74, 25-33.	2.0	17
62	The termination of translation. Current Opinion in Structural Biology, 2008, 18, 70-77.	2.6	54
63	Insights into Translational Termination from the Structure of RF2 Bound to the Ribosome. Science, 2008, 322, 953-956.	6.0	273
64	Modified Uridines with C5-methylene Substituents at the First Position of the tRNA Anticodon Stabilize U·G Wobble Pairing during Decoding. Journal of Biological Chemistry, 2008, 283, 18801-18811.	1.6	142
65	What we have learned from ribosome structures. Biochemical Society Transactions, 2008, 36, 567-574.	1.6	32
66	Structures of tRNAs with an expanded anticodon loop in the decoding center of the 30S ribosomal subunit. Rna, 2007, 13, 817-823.	1.6	52
67	The Eukaryotic Translation Initiation Factors eIF1 and eIF1A Induce an Open Conformation of the 40S Ribosome. Molecular Cell, 2007, 26, 41-50.	4.5	289
68	Mechanism for expanding the decoding capacity of transfer RNAs by modification of uridines. Nature Structural and Molecular Biology, 2007, 14, 498-502.	3.6	168
69	Crystal structure of the ribosome recycling factor bound to the ribosome. Nature Structural and Molecular Biology, 2007, 14, 733-737.	3.6	99
70	Structure of the 70S Ribosome Complexed with mRNA and tRNA. Science, 2006, 313, 1935-1942.	6.0	1,186
71	MOLECULAR BIOLOGY: A Renewed Focus on Transfer RNA. Science, 2005, 308, 1123-1124.	6.0	17
72	Crystal Structures of the Ribosome in Complex with Release Factors RF1 and RF2 Bound to a Cognate Stop Codon. Cell, 2005, 123, 1255-1266.	13.5	239

#	Article	IF	CITATIONS
73	STRUCTURAL INSIGHTS INTO TRANSLATIONAL FIDELITY. Annual Review of Biochemistry, 2005, 74, 129-177.	5.0	538
74	The role of modifications in codon discrimination by tRNALysUUU. Nature Structural and Molecular Biology, 2004, 11, 1186-1191.	3.6	304
75	Structure of a purine-purine wobble base pair in the decoding center of the ribosome. Nature Structural and Molecular Biology, 2004, 11, 1251-1252.	3.6	145
76	Insights into the decoding mechanism from recent ribosome structures. Trends in Biochemical Sciences, 2003, 28, 259-266.	3.7	335
77	Phasing the 30S ribosomal subunit structure. Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 2044-2050.	2.5	12
78	Shape can be seductive. Nature Structural Biology, 2003, 10, 78-80.	9.7	11
79	Visualizing tmRNA Entry into a Stalled Ribosome. Science, 2003, 300, 127-130.	6.0	141
80	Crystal structure of the 30 s ribosomal subunit from Thermus thermophilus: structure of the proteins and their interactions with 16 s RNA. Journal of Molecular Biology, 2002, 316, 725-768.	2.0	345
81	Ribosome Structure and the Mechanism of Translation. Cell, 2002, 108, 557-572.	13.5	759
82	Selection of tRNA by the Ribosome Requires a Transition from an Open to a Closed Form. Cell, 2002, 111, 721-732.	13.5	603
83	Crystal structure of the 30 S ribosomal subunit from Thermus thermophilus: purification, crystallization and structure determination. Journal of Molecular Biology, 2001, 310, 827-843.	2.0	128
84	Recognition of Cognate Transfer RNA by the 30S Ribosomal Subunit. Science, 2001, 292, 897-902.	6.0	1,085
85	Crystal Structure of an Initiation Factor Bound to the 30S Ribosomal Subunit. Science, 2001, 291, 498-501.	6.0	348
86	Insights from the structure of the 30S ribosomal subunit and its complex with antibiotics. Biochemical Society Transactions, 2001, 29, A48-A48.	1.6	0
87	Atomic structures at last: the ribosome in 2000. Current Opinion in Structural Biology, 2001, 11, 144-154.	2.6	149
88	Atomic Structures of the 30S Subunit and Its Complexes with Ligands and Antibiotics. Cold Spring Harbor Symposia on Quantitative Biology, 2001, 66, 17-32.	2.0	14
89	Structural studies on ribosomal components - insights into the mechanism of translation. Biochemical Society Transactions, 2000, 28, A103-A103.	1.6	0
90	Structure of the 30S ribosomal subunit. Biochemical Society Transactions, 2000, 28, A103-A103.	1.6	0

#	Article	IF	CITATIONS
91	Structure of the 30S ribosomal subunit. Nature, 2000, 407, 327-339.	13.7	1,891
92	Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature, 2000, 407, 340-348.	13.7	1,477
93	Another piece of the ribosome: solution structure of S16 and its location in the 30S subunit. Structure, 2000, 8, 875-882.	1.6	16
94	Enhanced visibility of hydrogen atoms by neutron crystallography on fully deuterated myoglobin. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 3872-3877.	3.3	117
95	The Structural Basis for the Action of the Antibiotics Tetracycline, Pactamycin, and Hygromycin B on the 30S Ribosomal Subunit. Cell, 2000, 103, 1143-1154.	13.5	816
96	Location of translational initiation factor IF3 on the small ribosomal subunit. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 4301-4306.	3.3	139
97	Structure of a bacterial 30S ribosomal subunit at 5.5 à resolution. Nature, 1999, 400, 833-840.	13.7	347
98	A Detailed View of a Ribosomal Active Site. Cell, 1999, 97, 491-502.	13.5	339
99	Crystal Structure of the Conserved Subdomain of Human Protein SRP54M at 2.1Ã Resolution: Evidence for the Mechanism of Signal Peptide Binding. Journal of Molecular Biology, 1999, 292, 697-705.	2.0	68
100	Crystal structure of the histone acetyltransferase Hpa2: a tetrameric member of the Gcn5-related N-acetyltransferase superfamily. Journal of Molecular Biology, 1999, 294, 1311-1325.	2.0	102
101	The crystal structure of ribosomal protein S4 reveals a two-domain molecule with an extensive RNA-binding surface: one domain shows structural homology to the ETS DNA-binding motif. EMBO Journal, 1998, 17, 4545-4558.	3.5	68
102	Position and orientation of the globular domain of linker histone H5 on the nucleosome. Nature, 1998, 395, 402-405.	13.7	205
103	Ribosomal protein structures: insights into the architecture, machinery and evolution of the ribosome. Trends in Biochemical Sciences, 1998, 23, 208-212.	3.7	151
104	Conformational variability of the N-terminal helix in the structure of ribosomal protein S15. Structure, 1998, 6, 429-438.	1.6	52
105	Structure of the Histone Acetyltransferase Hat1. Cell, 1998, 94, 427-438.	13.5	223
106	Ribosomal proteins S5 and L6: high-resolution crystal structures and roles in protein synthesis and antibiotic resistance. Journal of Molecular Biology, 1998, 279, 873-888.	2.0	57
107	[31] Treatment of multiwavelength anomalous diffraction data as a special case of multiple isomorphous replacement. Methods in Enzymology, 1997, 276, 538-557.	0.4	96
108	HISTONE STRUCTURE AND THE ORGANIZATION OF THE NUCLEOSOME. Annual Review of Biophysics and Biomolecular Structure, 1997, 26, 83-112.	18.3	154

#	Article	IF	CITATIONS
109	The structure of ribosomal protein S7 at 1.9 à resolution reveals a β-hairpin motif that binds double-stranded nucleic acids. Structure, 1997, 5, 1187-1198.	1.6	70
110	Histone H1 and Chromatin Higher-Order Structure. Critical Reviews in Eukaryotic Gene Expression, 1997, 7, 215-230.	0.4	106
111	Treatment of multiwavelength anomalous diffraction data as a special case of multiple isomorphous replacement. Methods in Enzymology, 1997, 276, 538-57.	0.4	22
112	Solution Structure of Prokaryotic Ribosomal Protein S17 by High-Resolution NMR Spectroscopyâ€. Biochemistry, 1996, 35, 2845-2853.	1.2	45
113	Linker Histone-dependent DNA Structure in Linear Mononucleosomes. Journal of Molecular Biology, 1996, 257, 30-42.	2.0	166
114	Ribosomal Protein L9: A Structure Determination by the Combined Use of X-ray Crystallography and NMR Spectroscopy. Journal of Molecular Biology, 1996, 264, 1058-1071.	2.0	79
115	Identification of two DNA-binding sites on the globular domain of histone H5 EMBO Journal, 1996, 15, 3421-3429.	3.5	133
116	The crystal structure of ribosomal protein L14 reveals an important organizational component of the translational apparatus. Structure, 1996, 4, 55-66.	1.6	71
117	Structural evidence for specific S8–RNA and S8–protein interactions within the 30S ribosomal subunit: ribosomal protein S8 from Bacillus stearothermophilus at 1.9 å resolution. Structure, 1996, 4, 1093-1104.	1.6	69
118	High-Level Expression and Deuteration of Sperm Whale Myoglobin. , 1996, , 309-323.		2
119	Neutron Scattering Studies on Chromatin Higher-Order Structure. , 1996, 64, 127-136.		0
120	Identification of two DNA-binding sites on the globular domain of histone H5. EMBO Journal, 1996, 15, 3421-9.	3.5	55
121	The histone fold: evolutionary questions Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 11328-11330.	3.3	14
122	X-ray crystallography shows that translational initiation factor IF3 consists of two compact alpha/beta domains linked by an alpha-helix EMBO Journal, 1995, 14, 4056-4064.	3.5	147
123	Structures of prokaryotic ribosomal proteins: implications for RNA binding and evolution. Biochemistry and Cell Biology, 1995, 73, 979-986.	0.9	24
124	Prokaryotic Translation Initiation Factor IF3 Is an Elongated Protein Consisting of Two Crystallizable Domains. Biochemistry, 1995, 34, 6183-6187.	1.2	39
125	X-ray crystallography shows that translational initiation factor IF3 consists of two compact alpha/beta domains linked by an alpha-helix. EMBO Journal, 1995, 14, 4056-64.	3.5	44
126	Crystal structure of prokaryotic ribosomal protein L9: a bi-lobed RNA-binding protein EMBO Journal, 1994, 13, 205-212.	3.5	104

#	Article	IF	CITATIONS
127	Histone H1 is located in the interior of the chromatin 30-nm filament. Nature, 1994, 368, 351-354.	13.7	121
128	Crystallization and preliminary X-ray diffraction studies of bacterial ribosomal protein L14. Acta Crystallographica Section D: Biological Crystallography, 1994, 50, 790-792.	2.5	3
129	Homo- and Heteronuclear Two-Dimensional NMR Studies of the Globular Domain of Histone H1: Full Assignment, Tertiary Structure, and Comparison with the Globular Domain of Histone H5. Biochemistry, 1994, 33, 11079-11086.	1.2	98
130	Expression of Chicken Linker Histones in E. coli: Sources of Problems and Methods for Overcoming Some of the Difficulties. Protein Expression and Purification, 1994, 5, 242-251.	0.6	63
131	Histone structure. Current Opinion in Structural Biology, 1994, 4, 44-50.	2.6	26
132	Crystal structure of prokaryotic ribosomal protein L9: a bi-lobed RNA-binding protein. EMBO Journal, 1994, 13, 205-12.	3.5	40
133	Crystal structure of globular domain of histone H5 and its implications for nucleosome binding. Nature, 1993, 362, 219-223.	13.7	754
134	Homo- and heteronuclear two-dimensional NMR studies of the globular domain of histone H1: Sequential assignment and secondary structure. Biochemistry, 1993, 32, 11345-11351.	1.2	58
135	Ribosomal protein S17: Characterization of the three-dimensional structure by proton and nitrogen-15 NMR. Biochemistry, 1993, 32, 12812-12820.	1.2	73
136	Ribosomal protein L6: structural evidence of gene duplication from a primitive RNA binding protein EMBO Journal, 1993, 12, 4901-4908.	3.5	75
137	The structure of ribosomal protein S5 reveals sites of interaction with 16S rRNA. Nature, 1992, 358, 768-771.	13.7	171
138	Conformation of Lys-plasminogen and the kringle 1-3 fragment of plasminogen analyzed by small-angle neutron scattering. Biochemistry, 1991, 30, 3963-3969.	1.2	38
139	Cloning, sequencing, and overexpression of genes for ribosomal proteins from Bacillus stearothermophilus Journal of Biological Chemistry, 1991, 266, 880-885.	1.6	45
140	Cloning, sequencing, and overexpression of genes for ribosomal proteins from Bacillus stearothermophilus. Journal of Biological Chemistry, 1991, 266, 880-5.	1.6	35
141	Crystallization of the globular domain of histone H5. Journal of Molecular Biology, 1990, 212, 253-257.	2.0	20
142	Interaction of HMG14 with chromatin. Journal of Molecular Biology, 1990, 214, 897-910.	2.0	18
143	Instrumental resolution effects in small-angle neutron scattering. Journal of Applied Crystallography, 1988, 21, 438-451.	1.9	30
144	Neutron scattering from interfacially polymerized core-shell latexes. Journal of Colloid and Interface Science, 1988, 123, 24-35.	5.0	24

#	Article	IF	CITATIONS
145	Reconstitution of chromatin higher-order structure from histone H5 and depleted chromatin. Journal of Molecular Biology, 1988, 203, 997-1007.	2.0	40
146	[7] Neutron-scattering topography of proteins of the small ribosomal subunit. Methods in Enzymology, 1988, 164, 117-131.	0.4	0
147	A complete mapping of the positions of the proteins in the small ribosomal subunit of escherichia coli. Makromolekulare Chemie Macromolecular Symposia, 1988, 15, 123-130.	0.6	7
148	A complete mapping of the proteins in the small ribosomal subunit of Escherichia coli. Science, 1987, 238, 1403-1406.	6.0	280
149	Chromatin higher-order structure studied by neutron scattering and scanning transmission electron microscopy Proceedings of the National Academy of Sciences of the United States of America, 1987, 84, 7802-7806.	3.3	132
150	Hydrogen-deuterium exchange in structural biology. Physica B: Physics of Condensed Matter & C: Atomic, Molecular and Plasma Physics, Optics, 1986, 137, 214-220.	0.9	2
151	Scattering studies on ribosomes in solution. Physica B: Physics of Condensed Matter & C: Atomic, Molecular and Plasma Physics, Optics, 1986, 136, 232-235.	0.9	1
152	Distribution of protein and RNA in the 30S ribosomal subunit. Science, 1986, 231, 1562-1564.	6.0	51
153	A role for proteins S3 and S14 in the 30 S ribosomal subunit Journal of Biological Chemistry, 1986, 261, 15049-15052.	1.6	17
154	A role for proteins S3 and S14 in the 30 S ribosomal subunit. Journal of Biological Chemistry, 1986, 261, 15049-52.	1.6	12
155	A treatment of instrumental smearing effects in circularly symmetric small-angle scattering. Journal of Applied Crystallography, 1985, 18, 42-46.	1.9	20
156	Structure of the capsid of Kilham rat virus from small-angle neutron scattering. Biochemistry, 1984, 23, 6565-6569.	1.2	9
157	Positions of proteins S14, S18 and S20 in the 30 S ribosomal subunit of Escherichia coli. Journal of Molecular Biology, 1984, 174, 265-284.	2.0	53
158	Neutron scattering studies of nucleosome structure at low ionic strength. Biochemistry, 1983, 22, 4916-4923.	1.2	46
159	Analysis of neutron distance data. Journal of Molecular Biology, 1981, 153, 719-738.	2.0	17
160	Positions of proteins S6, S11 and S15 in the 30 S ribosomal subunit of Escherichia coli. Journal of Molecular Biology, 1981, 153, 739-760.	2.0	60
161	RHODOPSIN IN MODEL MEMBRANES: THE KINETICS OF CHANNEL OPENING AND CLOSING IN RHODOPSIN-CONTAINING PLANAR LIPID BILAYERS. Annals of the New York Academy of Sciences, 1980, 358, 36-42.	1.8	2
162	Green's-function theory of the ferroelectric phase transition in potassium dihydrogen phosphate (KDP). Physical Review B, 1977, 16, 422-426.	1.1	26

#	Article	IF	CITATIONS
163	Structures of Bacterial Ribosomal Proteins: High-Resolution Probes of the Architecture and Mechanism of the Ribosome. , 0, , 73-83.		1
164	Progress toward the Crystal Structure of a Bacterial 30S Ribosomal Subunit. , 0, , 1-9.		0
165	Thomas Arthur Steitz. 23 August 1940—9 October 2018. Biographical Memoirs of Fellows of the Royal Society, 0, , .	0.1	Ο