
Nobuyuki Tanaka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4644929/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Continuous 3D particles manipulation based on cooling thermal convection. Sensors and Actuators B: Chemical, 2022, 358, 131511.	7.8	4
2	Human iPS cell derived RPE strips for secure delivery of graft cells at a target place with minimal surgical invasion. Scientific Reports, 2021, 11, 21421.	3.3	11
3	Userâ€friendly cell patterning methods using a polydimethylsiloxane mold with microchannels. Development Growth and Differentiation, 2020, 62, 167-176.	1.5	11
4	Vacuum microcasting of 2-methacryloyloxyethyl phosphorylcholine polymer for stable cell patterning. BioTechniques, 2020, 69, 171-177.	1.8	1
5	Area cooling enables thermal positioning and manipulation of single cells. Lab on A Chip, 2020, 20, 3733-3743.	6.0	13
6	Movement tracing and analysis of benthic sting ray (Dasyatis akajei) and electric ray (Narke japonica) toward seabed exploration. SN Applied Sciences, 2020, 2, 1.	2.9	0
7	Characterization of the Hydration Process of Phospholipid-Mimetic Polymers Using Air-Injection-Mediated Liquid Exclusion Methods. Langmuir, 2020, 36, 5626-5632.	3.5	6
8	Flow analysis on microcasting with degassed polydimethylsiloxane micro-channels for cell patterning with cross-linked albumin. PLoS ONE, 2020, 15, e0232518.	2.5	6
9	Title is missing!. , 2020, 15, e0232518.		0
10	Title is missing!. , 2020, 15, e0232518.		0
11	Title is missing!. , 2020, 15, e0232518.		0
12	Title is missing!. , 2020, 15, e0232518.		0
13	Simple Isolation of Single Cell: Thin Glass Microfluidic Device for Observation of Isolated Single Euglena gracilis Cells. Analytical Sciences, 2019, 35, 577-583.	1.6	8
14	In-situ detection based on the biofilm hydrophilicity for environmental biofilm formation. Scientific Reports, 2019, 9, 8070.	3.3	21
15	An ultra-small fluid oscillation unit for pumping driven by self-organized three-dimensional bridging of pulsatile cardiomyocytes on elastic micro-piers. Sensors and Actuators B: Chemical, 2019, 293, 256-264.	7.8	17
16	Light controlled integratable single cell micro rotary vane pump. , 2017, , .		0
17	Micro-patterned agarose gel devices for single-cell high-throughput microscopy of E. coli cells. Scientific Reports, 2017, 7, 17750.	3.3	23
18	Analysis of Long-term Morphological Changes of Micro-patterned Molecules and Cells on PDMS and Glass Surfaces. Analytical Sciences, 2017, 33, 723-725.	1.6	12

Νοβυγυκι Τανακά

#	Article	IF	CITATIONS
19	An ensemble of agarose microwells and AI for understanding hMSC differentiation patterns. , 2017, , .		0
20	Non-contact wettability assessment for detecting cellular behaviors. , 2017, , .		0
21	Simple agarose micro-confinement array and machine-learning-based classification for analyzing the patterned differentiation of mesenchymal stem cells. PLoS ONE, 2017, 12, e0173647.	2.5	22
22	Contamination-free non-contact wettability assessment system. ROBOMECH Journal, 2017, 4, .	1.6	4
23	Ultrathin glass filter fabricated by femtosecond laser processing for high-throughput microparticle filtering. Applied Physics Express, 2016, 9, 066702.	2.4	16
24	Transplantation of epidermal cell sheets by endoscopic balloon dilatation to avoid esophageal re-strictures: initial experience in a porcine model. Endoscopy International Open, 2016, 04, E1116-E1123.	1.8	16
25	Vapor-based micro/nano-partitioning of fluoro-functional group immobilization for long-term stable cell patterning. RSC Advances, 2016, 6, 96306-96313.	3.6	8
26	The time-series evaluation of biohydrogen production by photosynthetic bacteria under fluctuating illumination pattern. Research on Chemical Intermediates, 2016, 42, 7701-7711.	2.7	0
27	Agarose micro-cast for the patterned differentiation of mesenchymal stem cells. , 2016, , .		0
28	Characterization of hydrogen production by the co-culture of dark-fermentative and photosynthetic bacteria. Research on Chemical Intermediates, 2016, 42, 7713-7722.	2.7	5
29	Preparation of Thermoresponsive Nanostructured Surfaces for Tissue Engineering. Journal of Visualized Experiments, 2016, , e53465.	0.3	2
30	Evaluating a time-delay of hydrogen production quantitatively in photosynthetic bacteria for stabilizing intermittency. Research on Chemical Intermediates, 2016, 42, 7723-7730.	2.7	0
31	Microcasting with agarose gel via degassed polydimethylsiloxane molds for repellency-guided cell patterning. RSC Advances, 2016, 6, 54754-54762.	3.6	36
32	An Adjustable Gaze Tracking System and Its Application for Automatic Discrimination of Interest Objects. IEEE/ASME Transactions on Mechatronics, 2016, 21, 973-979.	5.8	6
33	Massively-multicellular alignment with the self-aggregate of air bubbles. , 2015, 2015, 3537-40.		0
34	Control of cell adhesion and detachment on Langmuir-Schaefer surface composed of dodecyl-terminated thermo-responsive polymers. Journal of Biomaterials Science, Polymer Edition, 2014, 25, 431-443.	3.5	10
35	Noncontact fine alignment for multiple microcontact printing. , 2014, , .		1

High-throughput cell-patterning with a self-assembled bubble-raft. , 2014, , .

#	Article	IF	CITATIONS
37	Surface-tension microscopy by noncontact meniscus-manipulation. , 2014, , .		0
38	Control of Cell Adhesion and Detachment on Temperature-Responsive Block Copolymer Langmuir Films. Materials Research Society Symposia Proceedings, 2014, 1621, 101-106.	0.1	1
39	Rate control of cell sheet recovery by incorporating hydrophilic pattern in thermoresponsive cell culture dish. Journal of Biomedical Materials Research - Part A, 2014, 102, 2849-2856.	4.0	16
40	Thermoresponsive Nanostructured Surfaces Generated by the Langmuir–Schaefer Method Are Suitable for Cell Sheet Fabrication. Biomacromolecules, 2014, 15, 4160-4167.	5.4	10
41	Micro-patterned cell-sheets fabricated with stamping-force-controlled micro-contact printing. Biomaterials, 2014, 35, 9802-9810.	11.4	46
42	3P314 Intelligence for Robot-Human Communication(28. Bioengineering,Poster,The 52nd Annual) Tj ETQq0 0 0 r	gBT_/Over	logk 10 Tf 5
43	Cell Sheet Technology for Cardiac Tissue Engineering. Methods in Molecular Biology, 2014, 1181, 139-155.	0.9	29
44	New facile method for preparing themperature-resopnsive cell culture surfaces using a thioxantone-based photoinitiator immobilized polystyrene surface. , 2013, , .		1
45	A device for the rapid transfer/transplantation of living cell sheets with the absence of cell damage. Biomaterials, 2013, 34, 9018-9025.	11.4	35
46	Splitting culture medium by air-jet and rewetting for the assessment of the wettability of cultured epithelial cell surfaces. Biomaterials, 2013, 34, 9082-9088.	11.4	7
47	Multiple micro-contact printing of extra cellular matrix with fine alignment. , 2013, , .		3
48	Stamp-stiffness calibrated micro contact printing. , 2013, , .		4
49	Noncontact evaluation of the wetting characteristic of a cell sheet in culture medium. , 2012, , .		1
50	Scale-independent stiffness measurement of upper limbs with lymphedema by a circular compression. , 2012, 2013-6.		1
51	Non-contact Stiffness Sensing by Considering the Change of Fluid Force due to Object Deformation. Transactions of the Society of Instrument and Control Engineers, 2012, 48, 295-301.	0.2	0
52	Noncontact Active Sensing for Viscoelastic Parameters of Tissue With Coupling Effect. IEEE Transactions on Biomedical Engineering, 2011, 58, 509-520.	4.2	19
53	Non-contact stiffness sensing with deformation dependent force calibration. , 2011, , .		2

54 Cell Sheet Stiffness Sensing without taking out from culture liquid. , 2010, 2010, 827-30.

3

Νοβυγυκι Τανακά

#	Article	IF	CITATIONS
55	Point-type non-contact stiffness sensing of soft tissue with coupling effect. , 2010, 2010, 5764-7.		3
56	Inverse problem for stiffness sensing of living soft tissue. , 2010, , .		1
57	Synthesis and Reactivity of Five-Membered P(V)-Phosphapalladacycles. Organometallics, 2009, 28, 2808-2817.	2.3	15
58	Active sensing for viscoelastic tissue with coupling effect. , 2008, 2008, 106-11.		12
59	Direction Dependent Response of Human Skin. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, 2007, 1687-90.	0.5	4
60	Evaluation of Human Skin Dynamic Characteristics Focused on Coupling Effect. Transactions of the Society of Instrument and Control Engineers, 2007, 43, 256-263.	0.2	0
61	Noncontact impedance sensing. Artificial Life and Robotics, 2006, 10, 35-40.	1.2	7
62	Skin Surface Shock Wave. , 2006, 2006, 4123-6.		17
63	2P1-C33 Sensing Human Skin Dynamics Focused on 2D Deformation. The Proceedings of JSME Annual Conference on Robotics and Mechatronics (Robomec), 2006, 2006, _2P1-C33_12P1-C33_2.	0.0	Ο
64	Skin Surface Shock Wave. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2006, , .	0.5	0