David C Luther

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4644596/publications.pdf Version: 2024-02-01

Πλνίο C Luther

#	Article	IF	CITATIONS
1	Supramolecular arrangement of protein in nanoparticle structures predicts nanoparticle tropism for neutrophils in acute lung inflammation. Nature Nanotechnology, 2022, 17, 86-97.	15.6	57
2	High affinity protein surface binding through co-engineering of nanoparticles and proteins. Nanoscale, 2022, 14, 2411-2418.	2.8	7
3	Direct Cytosolic Delivery of Proteins Using Lyophilized and Reconstituted Polymer-Protein Assemblies. Pharmaceutical Research, 2022, , 1.	1.7	3
4	Cytosolic Protein Delivery Using Modular Biotin–Streptavidin Assembly of Nanocomposites. ACS Nano, 2022, 16, 7323-7330.	7.3	12
5	Degradable ZnS-Supported Bioorthogonal Nanozymes with Enhanced Catalytic Activity for Intracellular Activation of Therapeutics. Journal of the American Chemical Society, 2022, 144, 12893-12900.	6.6	34
6	Macrophage-Encapsulated Bioorthogonal Nanozymes for Targeting Cancer Cells. Jacs Au, 2022, 2, 1679-1685.	3.6	18
7	Intracellular Activation of Anticancer Therapeutics Using Polymeric Bioorthogonal Nanocatalysts. Advanced Healthcare Materials, 2021, 10, e2001627.	3.9	26
8	Regulation of Proteins to the Cytosol Using Delivery Systems with Engineered Polymer Architecture. Journal of the American Chemical Society, 2021, 143, 4758-4765.	6.6	34
9	Protein Delivery: If Your GFP (or Other Small Protein) Is in the Cytosol, It Will Also Be in the Nucleus. Bioconjugate Chemistry, 2021, 32, 891-896.	1.8	20
10	Engineering the Interface between Inorganic Nanoparticles and Biological Systems through Ligand Design. Nanomaterials, 2021, 11, 1001.	1.9	13
11	Protein-Based Films as Antifouling and Drug-Eluting Antimicrobial Coatings for Medical Implants. ACS Applied Materials & Interfaces, 2021, 13, 48301-48307.	4.0	12
12	Differentiation of Cancer Stem Cells through Nanoparticle Surface Engineering. ACS Nano, 2020, 14, 15276-15285.	7.3	33
13	Protection and Isolation of Bioorthogonal Metal Catalysts by Using Monolayer oated Nanozymes. ChemBioChem, 2020, 21, 2759-2763.	1.3	23
14	Cytosolic Delivery of Functional Proteins <i>In Vitro</i> through Tunable Gigahertz Acoustics. ACS Applied Materials & Interfaces, 2020, 12, 15823-15829.	4.0	15
15	Intracellular Activation of Bioorthogonal Nanozymes through Endosomal Proteolysis of the Protein Corona. ACS Nano, 2020, 14, 4767-4773.	7.3	74
16	Delivery of drugs, proteins, and nucleic acids using inorganic nanoparticles. Advanced Drug Delivery Reviews, 2020, 156, 188-213.	6.6	167
17	Thermally Gated Bio-orthogonal Nanozymes with Supramolecularly Confined Porphyrin Catalysts for Antimicrobial Uses. CheM, 2020, 6, 1113-1124.	5.8	62
18	Direct Cytosolic Delivery of Proteins through Coengineering of Proteins and Polymeric Delivery Vehicles. Journal of the American Chemical Society, 2020, 142, 4349-4355.	6.6	109

DAVID C LUTHER

#	Article	IF	CITATIONS
19	Nano Assessing Nano: Nanosensorâ€Enabled Detection of Cell Phenotypic Changes Identifies Nanoparticle Toxicological Effects at Ultra‣ow Exposure Levels. Small, 2020, 16, 2002084.	5.2	7
20	In Vivo Editing of Macrophages through Systemic Delivery of CRISPRâ€Cas9â€Ribonucleoproteinâ€Nanoparticle Nanoassemblies. Advanced Therapeutics, 2019, 2, 1900041.	1.6	32
21	Protein Delivery into the Cell Cytosol using Non-Viral Nanocarriers. Theranostics, 2019, 9, 3280-3292.	4.6	84
22	Advances in CRISPR/Cas9 Technology for <i>in Vivo</i> Translation. Biological and Pharmaceutical Bulletin, 2019, 42, 304-311.	0.6	4
23	Targeted Therapeutic Genome Engineering: Opportunities and Bottlenecks in Medical Translation. ACS Symposium Series, 2019, , 1-34.	0.5	0
24	Control of Intra- <i>versus</i> Extracellular Bioorthogonal Catalysis Using Surface-Engineered Nanozymes. ACS Nano, 2019, 13, 229-235.	7.3	61
25	Water-based synthesis of gold and silver nanoparticles with cuboidal and spherical shapes using luteolin tetraphosphate at room temperature. Environmental Science: Nano, 2018, 5, 917-932.	2.2	12
26	Protein delivery into cells using inorganic nanoparticle–protein supramolecular assemblies. Chemical Society Reviews, 2018, 47, 3421-3432.	18.7	156
27	Synthesis and antibacterial characterization of sustainable nanosilver using naturally-derived macromolecules. Science of the Total Environment, 2016, 563-564, 977-986.	3.9	19
28	Greener synthesis and characterization, antimicrobial and cytotoxicity studies of gold nanoparticles of novel shapes and sizes. RSC Advances, 2016, 6, 2302-2313.	1.7	30