
Shou-Wei Ding

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4644582/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antiviral Immunity Directed by Small RNAs. Cell, 2007, 130, 413-426.	28.9	1,304
2	RNA-based antiviral immunity. Nature Reviews Immunology, 2010, 10, 632-644.	22.7	764
3	RNA Interference Directs Innate Immunity Against Viruses in Adult Drosophila. Science, 2006, 312, 452-454.	12.6	638
4	Cotton plants export microRNAs to inhibit virulence gene expression in a fungal pathogen. Nature Plants, 2016, 2, 16153.	9.3	418
5	Virus Counterdefense: Diverse Strategies for Evading the RNA-Silencing Immunity. Annual Review of Microbiology, 2006, 60, 503-531.	7.3	403
6	RNAi-mediated viral immunity requires amplification of virus-derived siRNAs in <i>Arabidopsis thaliana</i> . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 484-489.	7.1	385
7	Suppression of Antiviral Silencing by Cucumber Mosaic Virus 2b Protein in Arabidopsis Is Associated with Drastically Reduced Accumulation of Three Classes of Viral Small Interfering RNAs. Plant Cell, 2007, 19, 2053-2063.	6.6	354
8	The 21-Nucleotide, but Not 22-Nucleotide, Viral Secondary Small Interfering RNAs Direct Potent Antiviral Defense by Two Cooperative Argonautes in <i>Arabidopsis thaliana</i> Â Â. Plant Cell, 2011, 23, 1625-1638.	6.6	354
9	RNA Interference Functions as an Antiviral Immunity Mechanism in Mammals. Science, 2013, 342, 231-234.	12.6	308
10	Small RNA-based antimicrobial immunity. Nature Reviews Immunology, 2019, 19, 31-44.	22.7	282
11	New Overlapping Gene Encoded by the Cucumber Mosaic Virus Genome. Virology, 1994, 198, 593-601.	2.4	261
12	Strong host resistance targeted against a viral suppressor of the plant gene silencing defence mechanism. EMBO Journal, 1999, 18, 2683-2691.	7.8	206
13	Virus infection triggers widespread silencing of host genes by a distinct class of endogenous siRNAs in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14613-14618.	7.1	189
14	Suppression of <i>Arabidopsis</i> ARGONAUTE1-Mediated Slicing, Transgene-Induced RNA Silencing, and DNA Methylation by Distinct Domains of the <i>Cucumber mosaic virus</i> 2b Protein. Plant Cell, 2012, 24, 259-274.	6.6	173
15	Discovery of Replicating Circular RNAs by RNA-Seq and Computational Algorithms. PLoS Pathogens, 2014, 10, e1004553.	4.7	130
16	Induction and suppression of antiviral RNA interference by influenza A virus in mammalian cells. Nature Microbiology, 2017, 2, 16250.	13.3	120
17	Viral effector protein manipulates host hormone signaling to attract insect vectors. Cell Research, 2017, 27, 402-415.	12.0	115
18	Virus-derived siRNAs and piRNAs in immunity and pathogenesis. Current Opinion in Virology, 2011, 1, 533-544	5.4	80

SHOU-WEI DING

#	Article	IF	CITATIONS
19	Homologous RIG-l–like helicase proteins direct RNAi-mediated antiviral immunity in <i>C. elegans</i> by distinct mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16085-16090.	7.1	72
20	Antiviral RNA interference in mammals. Current Opinion in Immunology, 2018, 54, 109-114.	5.5	69
21	Lipid flippases promote antiviral silencing and the biogenesis of viral and host siRNAs in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1377-1382.	7.1	52
22	lncRNA Sensing of a Viral Suppressor of RNAi Activates Non-canonical Innate Immune Signaling in Drosophila. Cell Host and Microbe, 2020, 27, 115-128.e8.	11.0	44
23	Differential expression of cucumber RNAâ€dependent RNA polymerase 1 genes during antiviral defence and resistance. Molecular Plant Pathology, 2018, 19, 300-312.	4.2	42
24	Identification of a New Host Factor Required for Antiviral RNAi and Amplification of Viral siRNAs. Plant Physiology, 2018, 176, 1587-1597.	4.8	37
25	A Bunyavirus-Inducible Ubiquitin Ligase Targets RNA Polymerase IV for Degradation during Viral Pathogenesis in Rice. Molecular Plant, 2020, 13, 836-850.	8.3	36
26	<i>Caenorhabditis elegans</i> RIG-I Homolog Mediates Antiviral RNA Interference Downstream of Dicer-Dependent Biogenesis of Viral Small Interfering RNAs. MBio, 2017, 8, .	4.1	31
27	Genome-wide identification of endogenous RNA-directed DNA methylation loci associated with abundant 21-nucleotide siRNAs in Arabidopsis. Scientific Reports, 2016, 6, 36247.	3.3	26
28	Mechanism and Function of Antiviral RNA Interference in Mice. MBio, 2020, 11, .	4.1	25
29	DNA Geminivirus Infection Induces an Imprinted E3 Ligase Gene to Epigenetically Activate Viral Gene Transcription. Plant Cell, 2020, 32, 3256-3272.	6.6	22
30	Arabidopsis ENOR3 regulates RNAi-mediated antiviral defense. Journal of Genetics and Genomics, 2018, 45, 33-40.	3.9	20
31	Efficient Dicer processing of virus-derived double-stranded RNAs and its modulation by RIG-I-like receptor LGP2. PLoS Pathogens, 2021, 17, e1009790.	4.7	17
32	Reply to â€~Questioning antiviral RNAi in mammals'. Nature Microbiology, 2017, 2, 17053.	13.3	16
33	Hibiscus chlorotic ringspot virus coat protein inhibits trans-acting small interfering RNA biogenesis in Arabidopsis. Journal of General Virology, 2008, 89, 2349-2358.	2.9	15
34	Antiviral RNA Silencing in Mammals: No News Is Not Good News. Cell Reports, 2014, 9, 795-797.	6.4	14
35	Identification ofÂpositive and negative regulators of antiviral RNA interference in Arabidopsis thaliana. Nature Communications, 2022, 13, .	12.8	12
36	Mouse circulating extracellular vesicles contain virusâ€derived siRNAs active in antiviral immunity. EMBO Journal, 2022, 41, e109902.	7.8	11

SHOU-WEI DING

#	Article	IF	CITATIONS
37	Mammalian viral suppressors of RNA interference. Trends in Biochemical Sciences, 2022, 47, 978-988.	7.5	11
38	RIG-I-dependent antiviral immunity is effective against an RNA virus encoding a potent suppressor of RNAi. Biochemical and Biophysical Research Communications, 2015, 460, 1035-1040.	2.1	8
39	Cucumber RDR1s and cucumber mosaic virus suppressor protein 2b association directs host defence in cucumber plants. Molecular Plant Pathology, 2021, 22, 1317-1331.	4.2	8
40	JAcked Responses Go Viral: Hormonal Regulation of Antiviral RNAi. Cell Host and Microbe, 2020, 28, 7-9.	11.0	7
41	Boosting stem cell immunity to viruses. Science, 2021, 373, 160-161.	12.6	7
42	RNA-based immunity in insects. , 2001, , 63-74.		5
43	A Sensitized Genetic Screen to Identify Novel Components and Regulators of the Host Antiviral RNA Interference Pathway. Methods in Molecular Biology, 2019, 2028, 215-229.	0.9	5
44	Templating Antiviral RNAi in Insects. Cell Host and Microbe, 2018, 23, 290-292.	11.0	3
45	Altering Intracellular Localization of the RNA Interference Factors by Influenza A Virus Non-structural Protein 1. Frontiers in Microbiology, 2020, 11, 590904.	3.5	3
46	New evidence on the antiviral role of RNA interference in mammals. National Science Review, 2017, 4, 667-668.	9.5	2
47	Editorial overview: Mechanisms in the molecular interactions of plants with viruses and viroids. Current Opinion in Virology, 2021, 49, 27-29.	5.4	1
48	Culture-Independent Discovery of Viroids by Deep Sequencing and Computational Algorithms. Methods in Molecular Biology, 2022, 2316, 251-274.	0.9	1
49	Editorial overview: Engineering for viral resistance. Current Opinion in Virology, 2018, 32, iii.	5.4	0