Ali Asgar S Bhagat

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4643662/ali-asgar-s-bhagat-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

5,609 48 28 55 h-index g-index citations papers 6.1 6,346 55 5.59 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
48	Integrative Analysis and Machine Learning based Characterization of Single Circulating Tumor Cells. Journal of Clinical Medicine, 2020 , 9,	5.1	16
47	Prospective Molecular Profiling of Circulating Tumor Cells from Patients with Melanoma Receiving Combinatorial Immunotherapy. <i>Clinical Chemistry</i> , 2020 , 66, 169-177	5.5	17
46	Detection and prognostic relevance of circulating tumour cells (CTCs) in Asian breast cancers using a label-free microfluidic platform. <i>PLoS ONE</i> , 2019 , 14, e0221305	3.7	7
45	Addressing cellular heterogeneity in tumor and circulation for refined prognostication. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 17957-17962	11.5	29
44	ClearCell FX, a label-free microfluidics technology for enrichment of viable circulating tumor cells. <i>Cytometry Part A: the Journal of the International Society for Analytical Cytology</i> , 2018 , 93, 1251-1254	4.6	46
43	A preliminary study for the assessment of PD-L1 and PD-L2 on circulating tumor cells by microfluidic-based chipcytometry. <i>Future Science OA</i> , 2017 , 3, FSO244	2.7	15
42	Abstract 2923: Label-free enrichment and integrated full-length mRNA transcriptome analysis of single live circulating tumor cells from breast cancer patients 2017 ,		4
41	Abstract 3788: Monitoring of multimodality immune checkpoint inhibitor treatment efficacy in metastatic melanoma patients through molecular analysis of circulating tumor cells 2017 ,		2
40	Ultra-fast, label-free isolation of circulating tumor cells from blood using spiral microfluidics. <i>Nature Protocols</i> , 2016 , 11, 134-48	18.8	338
39	High-throughput synchronization of mammalian cell cultures by spiral microfluidics. <i>Methods in Molecular Biology</i> , 2014 , 1104, 3-13	1.4	3
38	An ultra-high-throughput spiral microfluidic biochip for the enrichment of circulating tumor cells. <i>Analyst, The</i> , 2014 , 139, 3245-55	5	146
37	Micromagnetic resonance relaxometry for rapid label-free malaria diagnosis. <i>Nature Medicine</i> , 2014 , 20, 1069-73	50.5	84
36	Clinical validation of an ultra high-throughput spiral microfluidics for the detection and enrichment of viable circulating tumor cells. <i>PLoS ONE</i> , 2014 , 9, e99409	3.7	139
35	Single cell kinase signaling assay using pinched flow coupled droplet microfluidics. <i>Biomicrofluidics</i> , 2014 , 8, 034104	3.2	29
34	Slanted spiral microfluidics for the ultra-fast, label-free isolation of circulating tumor cells. <i>Lab on A Chip</i> , 2014 , 14, 128-37	7.2	385
33	Spiral microchannel with rectangular and trapezoidal cross-sections for size based particle separation. <i>Scientific Reports</i> , 2013 , 3, 1475	4.9	184
32	Isoporous micro/nanoengineered membranes. ACS Nano, 2013 , 7, 1882-904	16.7	123

(2008-2013)

31	Isolation and retrieval of circulating tumor cells using centrifugal forces. <i>Scientific Reports</i> , 2013 , 3, 125	9 4.9	523
30	Real-time control of a microfluidic channel for size-independent deformability cytometry. <i>Journal of Micromechanics and Microengineering</i> , 2012 , 22, 105037	2	20
29	Separation of leukocytes from blood using spiral channel with trapezoid cross-section. <i>Analytical Chemistry</i> , 2012 , 84, 9324-31	7.8	151
28	Microfluidic technologies. <i>Recent Results in Cancer Research</i> , 2012 , 195, 59-67	1.5	5
27	A microfluidics approach towards high-throughput pathogen removal from blood using margination. <i>Biomicrofluidics</i> , 2012 , 6, 24115-2411513	3.2	66
26	Pinched flow coupled shear-modulated inertial microfluidics for high-throughput rare blood cell separation. <i>Lab on A Chip</i> , 2011 , 11, 1870-8	7.2	280
25	High-throughput cell cycle synchronization using inertial forces in spiral microchannels. <i>Lab on A Chip</i> , 2011 , 11, 1359-67	7.2	137
24	Microfluidic Devices for Blood Fractionation. <i>Micromachines</i> , 2011 , 2, 319-343	3.3	123
23	Rapid mixing of sub-microlitre drops by magnetic micro-stirring. <i>Lab on A Chip</i> , 2011 , 11, 3313-9	7.2	24
22	Transport and reaction of nanoliter samples in a microfluidic reactor using electro-osmotic flow. Journal of Micromechanics and Microengineering, 2010 , 20, 035017	2	13
21	Deformability Based Cell Margination [A Simple Microfluidic Design for Malarial Infected Red Blood Cell Filtration. <i>IFMBE Proceedings</i> , 2010 , 1671-1674	0.2	3
20	Deformability based cell marginationa simple microfluidic design for malaria-infected erythrocyte separation. <i>Lab on A Chip</i> , 2010 , 10, 2605-13	7.2	244
19	Microfluidics for cell separation. <i>Medical and Biological Engineering and Computing</i> , 2010 , 48, 999-1014	3.1	428
18	Inertial microfluidics for sheath-less high-throughput flow cytometry. <i>Biomedical Microdevices</i> , 2010 , 12, 187-95	3.7	152
17	Inertial microfluidics for continuous particle filtration and extraction. <i>Microfluidics and Nanofluidics</i> , 2009 , 7, 217-226	2.8	222
16	Photodefinable PDMS thin films for microfabrication applications. <i>Journal of Micromechanics and Microengineering</i> , 2009 , 19, 045024	2	58
15	Inertial microfluidics for continuous particle separation in spiral microchannels. <i>Lab on A Chip</i> , 2009 , 9, 2973-80	7.2	481
14	Enhancing particle dispersion in a passive planar micromixer using rectangular obstacles. <i>Journal of Micromechanics and Microengineering</i> , 2008 , 18, 085005	2	54

13	Continuous particle separation in spiral microchannels using Dean flows and differential migration. <i>Lab on A Chip</i> , 2008 , 8, 1906-14	7.2	438
12	Enhanced particle filtration in straight microchannels using shear-modulated inertial migration. <i>Physics of Fluids</i> , 2008 , 20, 101702	4.4	182
11	Spiral microfluidic nanoparticle separators 2008,		6
10	Effects of applied electric field and microchannel wetted perimeter on electroosmotic velocity. <i>Microfluidics and Nanofluidics</i> , 2008 , 5, 185-192	2.8	9
9	Photodefinable polydimethylsiloxane (PDMS) for rapid lab-on-a-chip prototyping. <i>Lab on A Chip</i> , 2007 , 7, 1192-7	7.2	126
8	Re-usable quick-release interconnect for characterization of microfluidic systems. <i>Journal of Micromechanics and Microengineering</i> , 2007 , 17, 42-49	2	61
7	A simple planar micromixer with low-pressure drop for disposable lab-on-a-chip (LOC) systems 2007 ,		2
6	Simple passive micromixer using recombinant multiple flow streams 2007,		4
5	Photosensitive Poly(Dimethylsiloxane) (Photopdms) for Rapid and Simple Polymer Fabrication 2007 ,		1
4	A passive planar micromixer with obstructions for mixing at low Reynolds numbers. <i>Journal of Micromechanics and Microengineering</i> , 2007 , 17, 1017-1024	2	216
3	Passive micromixer with break-up obstructions 2006 , 6112, 145		6
2	Passive micromixer with obstructions for lab-on-a-chip applications 2005,		6
1	Integrative analysis and machine learning based characterization of single circulating tumor cells		1