List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4643595/publications.pdf Version: 2024-02-01

WIM VEDSÃOES

#	Article	IF	CITATIONS
1	Elongator, a conserved multitasking complex?. Molecular Microbiology, 2010, 76, 1065-1069.	2.5	317
2	Obg and Membrane Depolarization Are Part of a Microbial Bet-Hedging Strategy that Leads to Antibiotic Tolerance. Molecular Cell, 2015, 59, 9-21.	9.7	261
3	Therapeutic Nanoreactors:  Combining Chemistry and Biology in a Novel Triblock Copolymer Drug Delivery System. Nano Letters, 2005, 5, 2220-2224.	9.1	196
4	The Universally Conserved Prokaryotic GTPases. Microbiology and Molecular Biology Reviews, 2011, 75, 507-542.	6.6	175
5	Fructose-1,6-bisphosphate couples glycolytic flux to activation of Ras. Nature Communications, 2017, 8, 922.	12.8	161
6	Structural model of the dimeric Parkinson's protein LRRK2 reveals a compact architecture involving distant interdomain contacts. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4357-E4366.	7.1	130
7	Characterization of Phenylpyruvate Decarboxylase, Involved in Auxin Production of <i>Azospirillum brasilense</i> . Journal of Bacteriology, 2007, 189, 7626-7633.	2.2	110
8	Catalysis by nucleoside hydrolases. Current Opinion in Structural Biology, 2003, 13, 731-738.	5.7	102
9	ELP3 Controls Active Zone Morphology by Acetylating the ELKS Family Member Bruchpilot. Neuron, 2011, 72, 776-788.	8.1	94
10	Structure and function of a novel purine specific nucleoside hydrolase from Trypanosoma vivax11Edited by R. Huber. Journal of Molecular Biology, 2001, 307, 1363-1379.	4.2	89
11	Leaving Group Activation by Aromatic Stacking: An Alternative to General Acid Catalysis. Journal of Molecular Biology, 2004, 338, 1-6.	4.2	87
12	Assessment of stability, toxicity and immunogenicity of new polymeric nanoreactors for use in enzyme replacement therapy of MNGIE. Journal of Controlled Release, 2009, 137, 246-254.	9.9	75
13	Characterization of two homologous 2′-O-methyltransferases showing different specificities for their tRNA substrates. Rna, 2014, 20, 1257-1271.	3.5	69
14	Enzyme-Substrate Interactions in the Purine-specific Nucleoside Hydrolase from Trypanosoma vivax. Journal of Biological Chemistry, 2002, 277, 15938-15946.	3.4	64
15	Skywalker-TBC1D24 has a lipid-binding pocket mutated in epilepsy and required for synaptic function. Nature Structural and Molecular Biology, 2016, 23, 965-973.	8.2	55
16	A homologue of the Parkinson's disease-associated protein LRRK2 undergoes a monomer-dimer transition during GTP turnover. Nature Communications, 2017, 8, 1008.	12.8	53
17	Crystal Structures of the Conserved tRNA-Modifying Enzyme GidA: Implications for Its Interaction with MnmE and Substrate. Journal of Molecular Biology, 2008, 380, 532-547.	4.2	46
18	Substrate Recognition and Activity Regulation of the Escherichia coli mRNA Endonuclease MazF. Journal of Biological Chemistry, 2016, 291, 10950-10960.	3.4	44

#	Article	IF	CITATIONS
19	TBC1D24-TLDc-related epilepsy exercise-induced dystonia: rescue by antioxidants in a disease model. Brain, 2019, 142, 2319-2335.	7.6	44
20	Transition-state Complex of the Purine-specific Nucleoside Hydrolase of T.vivax: Enzyme Conformational Changes and Implications for Catalysis. Journal of Molecular Biology, 2006, 359, 331-346.	4.2	39
21	G-Domain Dimerization Orchestrates the tRNA Wobble Modification Reaction in the MnmE/GidA Complex. Journal of Molecular Biology, 2009, 392, 910-922.	4.2	39
22	Phosphorylation decelerates conformational dynamics in bacterial translation elongation factors. Science Advances, 2018, 4, eaap9714.	10.3	37
23	The crystal structure of phenylpyruvate decarboxylase from Azospirillum brasilense at 1.5â€fÃ resolution. FEBS Journal, 2007, 274, 2363-2375.	4.7	35
24	Evaluation of Nucleoside Hydrolase Inhibitors for Treatment of African Trypanosomiasis. Antimicrobial Agents and Chemotherapy, 2010, 54, 1900-1908.	3.2	35
25	N-Arylmethyl substituted iminoribitol derivatives as inhibitors of a purine specific nucleoside hydrolase. Bioorganic and Medicinal Chemistry, 2008, 16, 6752-6763.	3.0	33
26	Crystal structures of the tRNA:m 2 G6 methyltransferase Trm14/TrmN from two domains of life. Nucleic Acids Research, 2012, 40, 5149-5161.	14.5	33
27	New Insights into the Mechanism of Nucleoside Hydrolases from the Crystal Structure of theEscherichia coliYbeK Protein Bound to the Reaction Productâ€,‡. Biochemistry, 2006, 45, 773-782.	2.5	32
28	Molecular Mechanism of Allosteric Substrate Activation in a Thiamine Diphosphate-dependent Decarboxylase. Journal of Biological Chemistry, 2007, 282, 35269-35278.	3.4	32
29	Roco Proteins: GTPases with a Baroque Structure and Mechanism. International Journal of Molecular Sciences, 2019, 20, 147.	4.1	31
30	The Crystal Structure of Trypanosoma cruzi Glucokinase Reveals Features Determining Oligomerization and Anomer Specificity of Hexose-phosphorylating Enzymes. Journal of Molecular Biology, 2007, 372, 1215-1226.	4.2	29
31	Substrate-assisted Leaving Group Activation in Enzyme-catalyzed N-Glycosidic Bond Cleavage. Journal of Biological Chemistry, 2005, 280, 14799-14802.	3.4	28
32	SAXS analysis of the tRNA-modifying enzyme complex MnmE/MnmG reveals a novel interaction mode and GTP-induced oligomerization. Nucleic Acids Research, 2014, 42, 5978-5992.	14.5	27
33	Structural and functional insights into tRNA binding and adenosine N1-methylation by an archaeal Trm10 homologue. Nucleic Acids Research, 2016, 44, 940-953.	14.5	27
34	The antibacterial prodrug activator Rv2466c is a mycothiol-dependent reductase in the oxidative stress response of Mycobacterium tuberculosis. Journal of Biological Chemistry, 2017, 292, 13097-13110.	3.4	27
35	A putative de- <i>N</i> -acetylase of the PIG-L superfamily affects fluoroquinolone tolerance in <i>Pseudomonas aeruginosa</i> . Pathogens and Disease, 2014, 71, 39-54.	2.0	25
36	Crystal structures of T. vivax nucleoside hydrolase in complex with new potent and specific inhibitors. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2009, 1794, 953-960.	2.3	22

#	Article	IF	CITATIONS
37	A Single-Amino-Acid Substitution in Obg Activates a New Programmed Cell Death Pathway in Escherichia coli. MBio, 2015, 6, e01935-15.	4.1	22
38	Pre-Steady-State Analysis of the Nucleoside Hydrolase ofTrypanosoma vivax. Evidence for Half-of-the-Sites Reactivity and Rate-Limiting Product Releaseâ€. Biochemistry, 2003, 42, 12902-12908.	2.5	21
39	Structure and nucleotide-induced conformational dynamics of the Chlorobium tepidum Roco protein. Biochemical Journal, 2019, 476, 51-66.	3.7	21
40	Structural and biochemical analysis of Escherichia coli ObgE, a central regulator of bacterial persistence. Journal of Biological Chemistry, 2017, 292, 5871-5883.	3.4	20
41	1,2,3-Triazolylalkylribitol derivatives as nucleoside hydrolase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 2523-2526.	2.2	19
42	A Flexible Loop as a Functional Element in the Catalytic Mechanism of Nucleoside Hydrolase from Trypanosoma vivax. Journal of Biological Chemistry, 2008, 283, 22272-22282.	3.4	19
43	Structure and Mechanism of the 6-Oxopurine Nucleosidase from <i>Trypanosoma brucei brucei</i> ,. Biochemistry, 2010, 49, 8999-9010.	2.5	18
44	The open reading frame TTC1157 of <i>Thermus thermophilus</i> HB27 encodes the methyltransferase forming <i>N</i> ² -methylguanosine at position 6 in tRNA. Rna, 2012, 18, 815-824.	3.5	16
45	Structural and biochemical analysis of the dual-specificity Trm10 enzyme from <i>Thermococcus kodakaraensis</i> prompts reconsideration of its catalytic mechanism. Rna, 2018, 24, 1080-1092.	3.5	16
46	Synthesis of Bicyclic <i>N</i> â€Arylmethylâ€Substituted Iminoribitol Derivatives as Selective Nucleoside Hydrolase Inhibitors. ChemMedChem, 2009, 4, 249-260.	3.2	15
47	Allosteric Inhibition of Parkinson's-Linked LRRK2 by Constrained Peptides. ACS Chemical Biology, 2021, 16, 2326-2338.	3.4	15
48	Nanobodies as allosteric modulators of Parkinson's disease–associated LRRK2. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	15
49	Cloning, preliminary characterization and crystallization of nucleoside hydrolases fromCaenorhabditis elegansandCampylobacter jejuni. Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 1087-1089.	2.5	14
50	Structure of an early nativeâ€like intermediate of β2â€microglobulin amyloidogenesis. Protein Science, 2013, 22, 1349-1357.	7.6	14
51	NrdH-redoxin of Mycobacterium tuberculosis and Corynebacterium glutamicum Dimerizes at High Protein Concentration and Exclusively Receives Electrons from Thioredoxin Reductase. Journal of Biological Chemistry, 2013, 288, 7942-7955.	3.4	14
52	Invited review: MnmE, a GTPase that drives a complex tRNA modification reaction. Biopolymers, 2016, 105, 568-579.	2.4	14
53	Biochemical and kinetic properties of the complex Roco G-protein cycle. Biological Chemistry, 2018, 399, 1447-1456.	2.5	14
54	Multiple Transients in the Pre-Steady-State of Nucleoside Hydrolase Reveal Complex Substrate Binding, Product Base Release, and Two Apparent Rates of Chemistry. Biochemistry, 2006, 45, 9307-9318.	2.5	13

#	Article	IF	CITATIONS
55	Structural basis for the recognition of complex-type biantennary oligosaccharides by Pterocarpus angolensis lectin. FEBS Journal, 2006, 273, 2407-2420.	4.7	13
56	GTP Binding Is Necessary for the Activation of a Toxic Mutant Isoform of the Essential GTPase ObgE. International Journal of Molecular Sciences, 2020, 21, 16.	4.1	13
57	Allosteric modulation of the GTPase activity of a bacterial LRRK2 homolog by conformation-specific Nanobodies. Biochemical Journal, 2020, 477, 1203-1218.	3.7	12
58	A structure of substrate-bound Synaptojanin1 provides new insights in its mechanism and the effect of disease mutations. ELife, 2020, 9, .	6.0	11
59	Polymeric nanoreactors for enzyme replacement therapy of MNGIE. Journal of Controlled Release, 2010, 148, e19-e20.	9.9	10
60	The <i>Escherichia coli</i> GTPase ObgE modulates hydroxyl radical levels in response to DNA replication fork arrest. FEBS Journal, 2012, 279, 3692-3704.	4.7	9
61	Quantum chemical study of leaving group activation inT. vivax nucleoside hydrolase. International Journal of Quantum Chemistry, 2006, 106, 565-570.	2.0	7
62	Biochemical determinants of ObgEâ€mediated persistence. Molecular Microbiology, 2019, 112, 1593-1608.	2.5	7
63	Structural and biochemical characterization of the nucleoside hydrolase from <scp><i>C</i></scp> <i>. elegans</i> reveals the role of two active site cysteine residues in catalysis. Protein Science, 2017, 26, 985-996.	7.6	5
64	The LRR-Roc-COR module of the <i>Chlorobium tepidum</i> Roco protein: crystallization and X-ray crystallographic analysis. Acta Crystallographica Section F, Structural Biology Communications, 2017, 73, 520-524.	0.8	5
65	Entropic pressure controls the oligomerization of the <i>Vibrio cholerae</i> ParD2 antitoxin. Acta Crystallographica Section D: Structural Biology, 2021, 77, 904-920.	2.3	5
66	Crystallization and preliminary X-ray crystallographic analysis of putative tRNA-modification enzymes fromPyrococcus furiosusandThermus thermophilus. Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 1432-1435.	0.7	3
67	It Takes Two to Rule Translation Elongation. Structure, 2015, 23, 7-9.	3.3	3
68	Structure–Activity Relationship (SAR) Study of Spautin-1 to Entail the Discovery of Novel NEK4 Inhibitors. International Journal of Molecular Sciences, 2021, 22, 635.	4.1	3
69	Structural and kinetic characterization of Trypanosoma congolense pyruvate kinase. Molecular and Biochemical Parasitology, 2020, 236, 111263.	1.1	1
70	Yeast and Cancer: Common Mechanism Underlying Activation of Ras by Glycolytic Flux. FASEB Journal, 2018, 32, lb143.	0.5	0