
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4643403/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metacommunity organisation, spatial extent and dispersal in aquatic systems: patterns, processes and prospects. Freshwater Biology, 2015, 60, 845-869.	1.2	717
2	Reconceptualising the beta diversityâ€environmental heterogeneity relationship in running water systems. Freshwater Biology, 2015, 60, 223-235.	1.2	221
3	Environmental drivers of betaâ€diversity patterns in Newâ€World birds and mammals. Ecography, 2009, 32, 226-236.	2.1	177
4	Climatic history and dispersal ability explain the relative importance of turnover and nestedness components of beta diversity. Global Ecology and Biogeography, 2012, 21, 191-197.	2.7	175
5	A comparative analysis reveals weak relationships between ecological factors and beta diversity of stream insect metacommunities at two spatial levels. Ecology and Evolution, 2015, 5, 1235-1248.	0.8	167
6	Defining quantitative stream disturbance gradients and the additive role of habitat variation to explain macroinvertebrate taxa richness. Ecological Indicators, 2013, 25, 45-57.	2.6	146
7	Spatial eigenfunction analyses in stream networks: do watercourse and overland distances produce different results?. Freshwater Biology, 2011, 56, 1184-1192.	1.2	132
8	Beta diversity in stream macroinvertebrate assemblages: among-site and among-microhabitat components. Hydrobiologia, 2008, 598, 131-138.	1.0	106
9	Thresholds of freshwater biodiversity in response to riparian vegetation loss in the Neotropical region. Journal of Applied Ecology, 2020, 57, 1391-1402.	1.9	100
10	Conditional effects of aquatic insects of small tributaries on mainstream assemblages: position within drainage network matters. Canadian Journal of Fisheries and Aquatic Sciences, 2014, 71, 1-9.	0.7	99
11	The roles of dispersal limitation and environmental conditions in controlling caddisfly (Trichoptera) assemblages. Freshwater Biology, 2012, 57, 1554-1564.	1.2	93
12	Integrating dispersal proxies in ecological and environmental research in the freshwater realm. Environmental Reviews, 2017, 25, 334-349.	2.1	88
13	Spatial scale and the diversity of macroinvertebrates in a Neotropical catchment. Freshwater Biology, 2010, 55, 424-435.	1.2	87
14	Climate change threatens protected areas of the Atlantic Forest. Biodiversity and Conservation, 2014, 23, 357-368.	1.2	87
15	O que ganhamos 'confundindo' riqueza de espécies e equabilidade em um Ãndice de diversidade?. Biota Neotropica, 2008, 8, 21-27.	1.0	86
16	Macroinvertebrates in neotropical streams: richness patterns along a catchment and assemblage structure between 2 seasons. Journal of the North American Benthological Society, 2001, 20, 1-16.	3.0	85
17	Revealing the pathways by which agricultural landâ€use affects stream fish communities in South Brazilian grasslands. Freshwater Biology, 2016, 61, 1921-1934.	1.2	81
18	Effects of taxonomic and numeric resolution on the ability to detect ecological patterns at a local scale using stream macroinvertebrates. Archiv Für Hydrobiologie, 2005, 164, 309-323.	1.1	78

#	Article	IF	CITATIONS
19	Comparing species richness among assemblages using sample units: why not use extrapolation methods to standardize different sample sizes?. Oikos, 2003, 101, 398-410.	1.2	71
20	The Reduced Effectiveness of Protected Areas under Climate Change Threatens Atlantic Forest Tiger Moths. PLoS ONE, 2014, 9, e107792.	1.1	71
21	Evaluation of methods for estimating macroinvertebrate species richness using individual stones in tropical streams. Freshwater Biology, 2001, 46, 711-721.	1.2	62
22	Substrate roughness affects stream benthic algal diversity, assemblage composition, and nestedness. Journal of the North American Benthological Society, 2011, 30, 1049-1056.	3.0	61
23	Effects of urbanization on stream benthic invertebrate communities in Central Amazon. Ecological Indicators, 2017, 73, 480-491.	2.6	60
24	Metacommunity patterns across three Neotropical catchments with varying environmental harshness. Freshwater Biology, 2016, 61, 277-292.	1.2	58
25	Coâ€occurrence patterns in a diverse arboreal ant community are explained more by competition than habitat requirements. Ecology and Evolution, 2016, 6, 8907-8918.	0.8	51
26	Community size can affect the signals of ecological drift and niche selection on biodiversity. Ecology, 2020, 101, e03014.	1.5	50
27	Substrate heterogeneity influences the trait composition of stream insect communities: an experimental in situ study. Freshwater Science, 2016, 35, 1321-1329.	0.9	48
28	Leaf-litter breakdown in urban streams of Central Amazonia: direct and indirect effects of physical, chemical, and biological factors. Freshwater Science, 2015, 34, 716-726.	0.9	45
29	Dissimilarity of stream insect assemblages: effects of multiple scales and spatial distances. Hydrobiologia, 2013, 703, 239-246.	1.0	43
30	Hydrological disturbance overrides the effect of substratum roughness on the resistance and resilience of stream benthic algae. Freshwater Biology, 2012, 57, 1678-1688.	1.2	42
31	Resistance, resilience, and patchiness of invertebrate assemblages in native tussock and pasture streams in New Zealand after a hydrological disturbance. Canadian Journal of Fisheries and Aquatic Sciences, 2003, 60, 731-739.	0.7	40
32	Effects of litter patch area on macroinvertebrate assemblage structure and leaf breakdown in Central Amazonian streams. Hydrobiologia, 2010, 649, 355-363.	1.0	39
33	Geographical patterns of phylogenetic betaâ€diversity components in terrestrial mammals. Global Ecology and Biogeography, 2017, 26, 573-583.	2.7	39
34	A critique of the use of jackknife and related non-parametric techniques to estimate species richness. Community Ecology, 2004, 5, 149-157.	0.5	38
35	Subtropical streams harbour higher genus richness and lower abundance of insects compared to boreal streams, but scale matters. Journal of Biogeography, 2018, 45, 1983-1993.	1.4	38
36	Responses of aquatic invertebrate assemblages and leaf breakdown to macroconsumer exclusion in Amazonian "terra firme" streams. Fundamental and Applied Limnology, 2008, 172, 49-58.	0.4	36

#	Article	IF	CITATIONS
37	Focusing on variation: methods and applications of the concept of beta diversity in aquatic ecosystems. Acta Limnologica Brasiliensia, 2011, 23, 318-331.	0.4	35
38	Conservation of freshwater macroinvertebrate biodiversity in tropical regions. Aquatic Conservation: Marine and Freshwater Ecosystems, 2020, 30, 1238-1250.	0.9	35
39	Diversity of tiger moths in a Neotropical hotspot: determinants of species composition and identification of biogeographic units. Journal of Insect Conservation, 2011, 15, 643-651.	0.8	33
40	Experimental Assessment of the Effects of Environmental Factors and Longitudinal Position on Alpha and Beta Diversities of Aquatic Insects in a Neotropical Stream. International Review of Hydrobiology, 2012, 97, 157-167.	0.5	32
41	Effects of climate change on leaf breakdown by microorganisms and the shredder Phylloicus elektoros (Trichoptera: Calamoceratidae). Hydrobiologia, 2017, 789, 31-44.	1.0	32
42	Predicting the current distribution and potential spread of the exotic grass <i>Eragrostis plana</i> Nees in South America and identifying a bioclimatic niche shift during invasion. Austral Ecology, 2013, 38, 260-267.	0.7	30
43	What controls tadpole richness and guild composition in ponds in subtropical grasslands?. Austral Ecology, 2011, 36, 530-536.	0.7	29
44	Brazilian articles in international journals on Limnology. Scientometrics, 2006, 67, 187-199.	1.6	28
45	An experimental test of the effects of inorganic sediment addition on benthic macroinvertebrates of a subtropical stream. Hydrobiologia, 2008, 610, 321-329.	1.0	28
46	Use of ecological niche models to predict the distribution of invasive species: a scientometric analysis. Brazilian Journal of Biology, 2012, 72, 821-829.	0.4	27
47	tree <scp>NODF</scp> : nestedness to phylogenetic, functional and other treeâ€based diversity metrics. Methods in Ecology and Evolution, 2014, 5, 563-572.	2.2	27
48	Reliable sample sizes for estimating similarity among macroinvertebrate assemblages in tropical streams. Annales De Limnologie, 2010, 46, 93-100.	0.6	26
49	Choice of field and laboratory methods affects the detection of anthropogenic disturbances using stream macroinvertebrate assemblages. Ecological Indicators, 2020, 115, 106382.	2.6	26
50	A synthesis of land use impacts on stream biodiversity across metrics and scales. Ecology, 2021, 102, e03498.	1.5	24
51	Macroecologia, biogeografia e áreas prioritárias para conservação no cerrado. Oecologia Brasiliensis, 2009, 13, 470-497.	0.6	24
52	Explaining dissimilarities in macroinvertebrate assemblages among stream sites using environmental variables. Zoologia, 2009, 26, 79-84.	0.5	22
53	Estimation of dry mass of caddisflies Phylloicus elektoros (Trichoptera: Calamoceratidae) in a Central Amazon stream. Zoologia, 2014, 31, 337-342.	0.5	22
54	Sampling effort and information quality provided by rare and common species in estimating assemblage structure. Ecological Indicators, 2020, 110, 105937.	2.6	22

#	Article	IF	CITATIONS
55	Tadpole co-occurrence in ponds: When do guilds and time matter?. Acta Oecologica, 2011, 37, 140-145.	0.5	21
56	Environmental variability drives phytoplankton assemblage persistence in a subtropical reservoir. Austral Ecology, 2011, 36, 839-848.	0.7	20
57	You don't belong here: explaining the excess of rare species in terms of habitat, space and time. Oikos, 2018, 127, 497-506.	1.2	20
58	Habitat amount drives the functional diversity and nestedness of anuran communities in an Atlantic Forest fragmented landscape. Biotropica, 2019, 51, 874-884.	0.8	20
59	Beta diversity of stream insects differs between boreal and subtropical regions, but land use does not generally cause biotic homogenization. Freshwater Science, 2021, 40, 53-64.	0.9	20
60	Substratum simplification reduces beta diversity of stream algal communities. Freshwater Biology, 2017, 62, 205-213.	1.2	19
61	Richness of tiger moths (Lepidoptera: Arctiidae) in the Brazilian Cerrado: how much do we know?. Zoologia, 2010, 27, 725-731.	0.5	18
62	The importance of metacommunity processes for long-term turnover of riffle-dwelling fish assemblages depends on spatial position within a dendritic network. Canadian Journal of Fisheries and Aquatic Sciences, 2017, 74, 101-115.	0.7	18
63	Effects of spatial distance, physical barriers, and habitat on a stream fish metacommunity. Hydrobiologia, 2020, 847, 3039-3054.	1.0	16
64	Substrate roughness, fish grazers, and mesohabitat type interact to determine algal biomass and sediment accrual in a high-altitude subtropical stream. Hydrobiologia, 2013, 711, 165-173.	1.0	15
65	Riparian integrity affects diet and intestinal length of a generalist fish species. Marine and Freshwater Research, 2017, 68, 1272.	0.7	15
66	Compositional uniqueness of diatoms and insects in subtropical streams is weakly correlated with riffle position and environmental uniqueness. Hydrobiologia, 2019, 842, 219-232.	1.0	15
67	Beta diversity of stream fish communities along anthropogenic environmental gradients at multiple spatial scales. Environmental Monitoring and Assessment, 2019, 191, 288.	1.3	15
68	Diversity of anuran communities facing bullfrog invasion in Atlantic Forest ponds. Biological Invasions, 2015, 17, 1137-1147.	1.2	13
69	Effect of Environmental Variables on the Distribution of Two Freshwater Crabs (Anomura: Aeglidae). Journal of Crustacean Biology, 2008, 28, 248-251.	0.3	12
70	Alpha and beta components of diversity of freshwater nematodes at different spatial scales in subtropical coastal lakes. Fundamental and Applied Limnology, 2012, 180, 249-258.	0.4	12
71	How Does the Landscape Affect Metacommunity Structure? A Quantitative Review for Lentic Environments. Current Landscape Ecology Reports, 2020, 5, 68-75.	1.1	12
72	Colonization by Macroinvertebrates of Experimentally Disturbed Stones in Three Tropical Streams Differing in Size. International Review of Hydrobiology, 2004, 89, 317-325.	0.5	10

#	Article	IF	CITATIONS
73	Modelo preditivo de sobrevivência do Mexilhão Dourado (Limnoperna fortunei) em relação a variações de salinidade na Laguna dos Patos, RS, Brasil. Biota Neotropica, 2009, 9, 407-412.	1.0	10
74	Testing the native invasion hypothesis to explain anthropogenic influence on stream fish assemblages. Aquatic Sciences, 2019, 81, 1.	0.6	10
75	Global metaâ€analysis reveals that invertebrate diversity is higher in permanent than in temporary lentic water bodies. Freshwater Biology, 2019, 64, 2234-2246.	1.2	10
76	Assessment of methods to estimate aquatic macrophyte species richness in extrapolated sample sizes. Aquatic Botany, 2007, 86, 377-384.	0.8	9
77	Floods homogenize aquatic communities across time but not across space in a Neotropical floodplain. Aquatic Sciences, 2021, 83, 1.	0.6	9
78	Effect of Environmental Variables on the Distribution of Two Freshwater Crabs (Anomura: Aeglidae). Journal of Crustacean Biology, 2008, 28, 248-251.	0.3	9
79	Future ecological studies of Brazilian headwater streams under global-changes. Acta Limnologica Brasiliensia, 2012, 24, 293-302.	0.4	8
80	High assemblage persistence in heterogeneous habitats: an experimental test with stream benthic algae. Freshwater Biology, 2013, 58, 365-371.	1.2	8
81	Phylogenetic and functional structure of climbing plant assemblages in woody patches advancing over <i>Campos</i> grassland. Journal of Vegetation Science, 2017, 28, 1187-1197.	1.1	8
82	Saline gradient drives functional nestedness of polychaete communities in tropical estuaries. Estuarine, Coastal and Shelf Science, 2021, 251, 107185.	0.9	8
83	Attendance and Co-Occurrence of Birds Following Army Ants in the Atlantic Rain Forest. Condor, 2010, 112, 571-578.	0.7	7
84	Comparing the performance of different stream classification systems using aquatic macroinvertebrates. Acta Limnologica Brasiliensia, 2013, 25, 406-417.	0.4	7
85	Effects of a natural flood disturbance on species richness and beta diversity of stream benthic diatom communities. Aquatic Ecology, 2017, 51, 557-569.	0.7	7
86	The Karyotype of the Stream Dwelling Frog Megaelosia massarti (Anura, Leptodactylidae, Hylodinae) Cytologia, 1995, 60, 49-52.	0.2	6
87	Scale-sensitive stream slope drives nested fish trait-based diversity. Aquatic Ecology, 2021, 55, 1051-1063.	0.7	5
88	A new species of Pseudogaurax Malloch (Diptera: Chloropidae) reared from dobsonfly egg-masses (Megaloptera: Corydalidae) in Brazil. Zootaxa, 2009, 1972, 53-58.	0.2	4
89	Assessing community functional attributes during substrate colonization: a field experiment using stream insects. Hydrobiologia, 2019, 838, 183-192.	1.0	3
90	An attractor domain model of seasonal and interâ€annual β diversity of stream macroinvertebrate communities. Freshwater Biology, 2022, 67, 1370-1379.	1.2	3

#	Article	IF	CITATIONS
91	Catchment scale deforestation increases the uniqueness of subtropical stream communities. Oecologia, 2022, 199, 671-683.	0.9	3
92	Living on a catfish: nested occupation of ectosymbiotic chironomids on host body. Canadian Journal of Zoology, 2018, 96, 692-699.	0.4	2
93	Heavy-weighting rare species in dissimilarity indices improve recovery of multivariate groups. Ecological Complexity, 2021, 46, 100925.	1.4	2
94	Invertebrate beta diversity in permanent and temporary lentic water bodies: a meta-analytic assessment. Hydrobiologia, 2022, 849, 1273-1285.	1.0	1
95	Insect dispersal ability is crucial to overcome limitations in patch colonization of Eichhornia crassipes floating meadows. Limnology, 2022, 23, 287.	0.8	1