## Renate Renkawitz-Pohl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4643302/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Filopodia-based contact stimulation of cell migration drives tissue morphogenesis. Nature<br>Communications, 2021, 12, 791.                                                                               | 12.8 | 28        |
| 2  | Distinct CoREST complexes act in a cell-type-specific manner. Nucleic Acids Research, 2019, 47, 11649-11666.                                                                                              | 14.5 | 10        |
| 3  | Stage-specific testes proteomics of Drosophila melanogaster identifies essential proteins for male fertility. European Journal of Cell Biology, 2019, 98, 103-115.                                        | 3.6  | 14        |
| 4  | Drosophila melanogaster tPlus3a and tPlus3b ensure full male fertility by regulating transcription of Y-chromosomal, seminal fluid, and heat shock genes. PLoS ONE, 2019, 14, e0213177.                   | 2.5  | 2         |
| 5  | Nejire/dCBP-mediated histone H3 acetylation during spermatogenesis is essential for male fertility in Drosophila melanogaster. PLoS ONE, 2018, 13, e0203622.                                              | 2.5  | 17        |
| 6  | Myotube migration to cover and shape the testis of <i>Drosophila</i> depends on Heartless,<br>Cadherin/Catenin, and myosin II. Biology Open, 2017, 6, 1876-1888.                                          | 1.2  | 13        |
| 7  | Prtl99C Acts Together with Protamines and Safeguards Male Fertility in Drosophila. Cell Reports, 2015, 13, 2327-2335.                                                                                     | 6.4  | 20        |
| 8  | Multimerization of Drosophila sperm protein Mst77F causes a unique condensed chromatin structure.<br>Nucleic Acids Research, 2015, 43, 3033-3045.                                                         | 14.5 | 13        |
| 9  | A New Level of Plasticity: <i>Drosophila</i> Smooth-like Testes Muscles Compensate Failure of<br>Myoblast Fusion. Development (Cambridge), 2015, 143, 329-38.                                             | 2.5  | 16        |
| 10 | The HMG-box-containing proteins tHMG-1 and tHMG-2 interact during the histone-to-protamine transition in Drosophila spermatogenesis. European Journal of Cell Biology, 2015, 94, 46-59.                   | 3.6  | 18        |
| 11 | H3K79 methylation: a new conserved mark that accompanies H4 hyperacetylation prior to histone-to-protamine transition in <i>Drosophila</i> and rat. Biology Open, 2014, 3, 444-452.                       | 1.2  | 25        |
| 12 | Distinct genetic programs guide Drosophila circular and longitudinal visceral myoblast fusion. BMC<br>Cell Biology, 2014, 15, 27.                                                                         | 3.0  | 13        |
| 13 | Chromatin dynamics during spermiogenesis. Biochimica Et Biophysica Acta - Gene Regulatory<br>Mechanisms, 2014, 1839, 155-168.                                                                             | 1.9  | 411       |
| 14 | Tethering Membrane Fusion: Common and Different Players in Myoblasts and at the Synapse. Journal of Neurogenetics, 2014, 28, 302-315.                                                                     | 1.4  | 21        |
| 15 | <em>Ex vivo</em> Culture of <em>Drosophila</em> Pupal Testis and Single Male<br>Germ-line Cysts: Dissection, Imaging, and Pharmacological Treatment. Journal of Visualized<br>Experiments, 2014, , 51868. | 0.3  | 17        |
| 16 | tBRD-1 Selectively Controls Gene Activity in the Drosophila Testis and Interacts with Two New<br>Members of the Bromodomain and Extra-Terminal (BET) Family. PLoS ONE, 2014, 9, e108267.                  | 2.5  | 13        |
| 17 | Subunits of the Histone Chaperone CAF1 Also Mediate Assembly of Protamine-Based Chromatin. Cell<br>Reports, 2013, 4, 59-65.                                                                               | 6.4  | 30        |
| 18 | Three levels of regulation lead to protamine and Mst77F expression in Drosophila. Developmental<br>Biology, 2013, 377, 33-45.                                                                             | 2.0  | 30        |

| #  | Article                                                                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Myosin heavy chain-like localizes at cell contact sites during Drosophila myoblast fusion and interacts in vitro with Rolling pebbles 7. Experimental Cell Research, 2013, 319, 402-416.                                                                                                           | 2.6 | 19        |
| 20 | The bromodomain-containing protein tBRD-1 is specifically expressed in spermatocytes and is essential for male fertility. Biology Open, 2012, 1, 597-606.                                                                                                                                          | 1.2 | 18        |
| 21 | Multinucleated smooth muscles and mononucleated as well as multinucleated striated muscles<br>develop during establishment of the male reproductive organs of Drosophila melanogaster.<br>Developmental Biology, 2012, 370, 86-97.                                                                 | 2.0 | 29        |
| 22 | Role of the Actin Cytoskeleton Within FuRMAS During Drosophila Myoblast Fusion and First<br>Functionally Conserved Factors in Vertebrates. , 2011, , 139-170.                                                                                                                                      |     | 7         |
| 23 | <i>Drosophila</i> Swiprosin-1/EFHD2 accumulates at the prefusion complex stage<br>during <i>Drosophila</i> myoblast fusion. Journal of Cell Science, 2011, 124, 3266-3278.                                                                                                                         | 2.0 | 22        |
| 24 | Distinct functions of Mst77F and protamines in nuclear shaping and chromatin condensation during<br>Drosophila spermiogenesis. European Journal of Cell Biology, 2010, 89, 326-338.                                                                                                                | 3.6 | 81        |
| 25 | Histone H4 Acetylation is Essential to Proceed from a Histone- to a Protamine-based Chromatin<br>Structure in Spermatid Nuclei of <i>Drosophila melanogaster</i> . Systems Biology in Reproductive<br>Medicine, 2010, 56, 44-61.                                                                   | 2.1 | 69        |
| 26 | FuRMAS: triggering myoblast fusion in <i>Drosophila</i> . Developmental Dynamics, 2009, 238, 1513-1525.                                                                                                                                                                                            | 1.8 | 59        |
| 27 | Transition from a nucleosome-based to a protamine-based chromatin configuration during spermiogenesis in Drosophila. Journal of Cell Science, 2007, 120, 1689-1700.                                                                                                                                | 2.0 | 193       |
| 28 | Myoblast fusion inDrosophila melanogasteris mediated through a fusion-restricted myogenic-adhesive structure (FuRMAS). Developmental Dynamics, 2007, 236, 404-415.                                                                                                                                 | 1.8 | 82        |
| 29 | Blown fuse regulates stretching and outgrowth but not myoblast fusion of the circular visceral muscles in Drosophila. Differentiation, 2006, 74, 608-621.                                                                                                                                          | 1.9 | 32        |
| 30 | Drosophila Rolling pebbles colocalises and putatively interacts with alpha-Actinin and the Sls<br>isoform Zormin in the Z-discs of the sarcomere and with Dumbfounded/Kirre, alpha-Actinin and<br>Zormin in the terminal Z-discs. Journal of Muscle Research and Cell Motility, 2006, 27, 93-106.  | 2.0 | 34        |
| 31 | InDrosophila,don juananddon juan likeencode proteins of the spermatid nucleus and the flagellum<br>and both are regulated at the transcriptional level by the TAFII80 cannonball while translational<br>repression is achieved by distinct elements. Developmental Dynamics, 2006, 235, 1053-1064. | 1.8 | 34        |
| 32 | Replacement by Drosophila melanogaster Protamines and Mst77F of Histones during Chromatin<br>Condensation in Late Spermatids and Role of Sesame in the Removal of These Proteins from the Male<br>Pronucleus. Molecular and Cellular Biology, 2005, 25, 6165-6177.                                 | 2.3 | 147       |
| 33 | The formation of syncytia within the visceral musculature of the Drosophila midgut is dependent on duf, sns and mbc. Mechanisms of Development, 2002, 110, 85-96.                                                                                                                                  | 1.7 | 68        |
| 34 | The Drosophila don juan (dj) gene encodes a novel sperm specific protein component characterized by<br>an unusual domain of a repetitive amino acid motif. Mechanisms of Development, 1997, 64, 19-30.                                                                                             | 1.7 | 115       |