
Stephan Brons

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4643301/publications.pdf Version: 2024-02-01

STEDHAN ROONS

#	Article	IF	CITATIONS
1	Carbon irradiation overcomes glioma radioresistance by eradicating stem cells and forming an antiangiogenic and immunopermissive niche. JCI Insight, 2019, 4, .	5.0	63
2	Ultra-High Dose Rate (FLASH) Carbon Ion Irradiation:ÂDosimetry and First Cell Experiments. International Journal of Radiation Oncology Biology Physics, 2022, 112, 1012-1022.	0.8	39
3	FLASH Dose Rate Helium Ion Beams: First In Vitro Investigations. International Journal of Radiation Oncology Biology Physics, 2021, 111, 1011-1022.	0.8	34
4	A High-Granularity Digital Tracking Calorimeter Optimized for Proton CT. Frontiers in Physics, 2020, 8,	2.1	21
5	Radioresistance and Transcriptional Reprograming of Invasive Glioblastoma Cells. International Journal of Radiation Oncology Biology Physics, 2022, 112, 499-513.	0.8	10
6	Study of the intracellular nanoparticle-based radiosensitization mechanisms in F98 glioma cells treated with charged particle therapy through synchrotron-based infrared microspectroscopy. Analyst, The, 2020, 145, 2345-2356.	3.5	9
7	Personalized Assessment of Normal Tissue Radiosensitivity via Transcriptome Response to Photon, Proton and Carbon Irradiation in Patient-Derived Human Intestinal Organoids. Cancers, 2020, 12, 469.	3.7	9
8	Upgrading an Integrating Carbon-Ion Transmission Imaging System With Active Scanning Beam Delivery Toward Low Dose Ion Imaging. IEEE Transactions on Radiation and Plasma Medical Sciences, 2020, 4, 262-268.	3.7	8
9	Carbon ion radiotherapy eradicates medulloblastomas with chromothripsis in an orthotopic Li-Fraumeni patient-derived mouse model. Neuro-Oncology, 2021, 23, 2028-2041.	1.2	7
10	Experimental comparison of clinically used ion beams for imaging applications using a range telescope. Physics in Medicine and Biology, 2020, 65, 155004.	3.0	6
11	Towards real-time PGS range monitoring in proton therapy of prostate cancer. Scientific Reports, 2021, 11, 15331.	3.3	6
12	Differential transcriptome response to proton versus X-ray radiation reveals novel candidate targets for combinatorial PT therapy in lymphoma. Radiotherapy and Oncology, 2021, 155, 293-303.	0.6	5
13	Optimization of Carbon Ion Treatment Plans by Integrating Tissue Specific α/β-Values for Patients with Non-Resectable Pancreatic Cancer. PLoS ONE, 2016, 11, e0164473.	2.5	5
14	Carbon-ion irradiation overcomes HPV-integration/E2 gene-disruption induced radioresistance of cervical keratinocytes. Journal of Radiation Research, 2019, 60, 564-572.	1.6	4
15	Optimization of the spill quality for the hadron therapy at the Heidelberg Ion-Beam Therapy Centre. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2022, 1040, 167137.	1.6	3
16	Investigations on novel imaging techniques for ion beam therapy: Carbon ion radiography and tomography. , 2011, , .		2
17	Human mesenchymal stromal cells maintain their stem cell traits after high-LET particle irradiation – Potential implications for particle radiotherapy and manned space missions. Cancer Letters, 2022, 524, 172-181.	7.2	2
18	Experimental heliumâ€beam radiography with a highâ€energy beam: Waterâ€equivalent thickness calibration and first imageâ€quality results. Medical Physics, 2022, 49, 5347-5362.	3.0	2

#	Article	IF	CITATIONS
19	Dataset for predicting single-spot proton ranges in proton therapy of prostate cancer. Scientific Data, 2021, 8, 252.	5.3	0