Ramon Sala-Garrido

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4642523/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Energy efficiency in Spanish wastewater treatment plants: A non-radial DEA approach. Science of the Total Environment, 2011, 409, 2693-2699.	3.9	257
2	Economic feasibility study for wastewater treatment: A cost–benefit analysis. Science of the Total Environment, 2010, 408, 4396-4402.	3.9	242
3	Assessing the sustainability of small wastewater treatment systems: A composite indicator approach. Science of the Total Environment, 2014, 497-498, 607-617.	3.9	139
4	Cost–benefit analysis of water-reuse projects for environmental purposes: A case study for Spanish wastewater treatment plants. Journal of Environmental Management, 2011, 92, 3091-3097.	3.8	129
5	Economic valuation of environmental benefits from wastewater treatment processes: An empirical approach for Spain. Science of the Total Environment, 2010, 408, 953-957.	3.9	127
6	Cost modelling for wastewater treatment processes. Desalination, 2011, 268, 1-5.	4.0	121
7	Economic Feasibility Study for Phosphorus Recovery Processes. Ambio, 2011, 40, 408-416.	2.8	117
8	The social benefits of restoring water quality in the context of the Water Framework Directive: A comparison of willingness to pay and willingness to accept. Science of the Total Environment, 2009, 407, 4574-4583.	3.9	107
9	Assessment of wastewater treatment alternatives for small communities: An analytic network process approach. Science of the Total Environment, 2015, 532, 676-687.	3.9	101
10	Comparing the efficiency of wastewater treatment technologies through a DEA metafrontier model. Chemical Engineering Journal, 2011, 173, 766-772.	6.6	99
11	Technical efficiency and cost analysis in wastewater treatment processes: A DEA approach. Desalination, 2009, 249, 230-234.	4.0	95
12	Increasing offensive or defensive efficiency? An analysis of Italian and Spanish footballâ~†. Omega, 2009, 37, 63-78.	3.6	93
13	Economic and environmental performance of wastewater treatment plants: Potential reductions in greenhouse gases emissions. Resources and Energy Economics, 2014, 38, 125-140.	1.1	90
14	Measuring the CO 2 shadow price for wastewater treatment: A directional distance function approach. Applied Energy, 2015, 144, 241-249.	5.1	90
15	Assessing the efficiency of wastewater treatment plants in an uncertain context: a DEA with tolerances approach. Environmental Science and Policy, 2012, 18, 34-44.	2.4	80
16	Benchmarking in wastewater treatment plants: a tool to save operational costs. Clean Technologies and Environmental Policy, 2014, 16, 149-161.	2.1	77
17	The Luenberger productivity indicator in the water industry: An empirical analysis for England and Wales. Utilities Policy, 2014, 30, 18-28.	2.1	63
18	The impact of privatization approaches on the productivity growth of the water industry: A case study of Chile. Environmental Science and Policy, 2015, 50, 166-179.	2.4	60

#	Article	IF	CITATIONS
19	The role of environmental variables on the efficiency of water and sewerage companies: a case study of Chile. Environmental Science and Pollution Research, 2015, 22, 10242-10253.	2.7	53
20	Eco-efficiency assessment of wastewater treatment plants using a weighted Russell directional distance model. Journal of Cleaner Production, 2016, 137, 1066-1075.	4.6	51
21	Assessing the sustainability of water companies: A synthetic indicator approach. Ecological Indicators, 2016, 61, 577-587.	2.6	51
22	Assessing the efficiency of wastewater treatment plants: A double-bootstrap approach. Journal of Cleaner Production, 2017, 164, 315-324.	4.6	48
23	Assesing the Impact of Quality of Service on the Productivity of Water Industry: a Malmquist-Luenberger Approach for England and Wales. Water Resources Management, 2017, 31, 2407-2427.	1.9	48
24	Assessing changes in eco-productivity of wastewater treatment plants: The role of costs, pollutant removal efficiency, and greenhouse gas emissions. Environmental Impact Assessment Review, 2018, 69, 24-31.	4.4	46
25	Comparing changes in productivity among private water companies integrating quality of service: A metafrontier approach. Journal of Cleaner Production, 2019, 216, 597-606.	4.6	45
26	Estimating the environmental and resource costs of leakage in water distribution systems: A shadow price approach. Science of the Total Environment, 2016, 568, 180-188.	3.9	44
27	Development and application of the Hicks-Moorsteen productivity index for the total factor productivity assessment of wastewater treatment plants. Journal of Cleaner Production, 2016, 112, 3116-3123.	4.6	44
28	Measuring the eco-efficiency of wastewater treatment plants under data uncertainty. Journal of Environmental Management, 2018, 226, 484-492.	3.8	43
29	Tariffs and Cost Recovery in Water Reuse. Water Resources Management, 2013, 27, 1797-1808.	1.9	41
30	Benchmarking the efficiency of the Chilean water and sewerage companies: a double-bootstrap approach. Environmental Science and Pollution Research, 2018, 25, 8432-8440.	2.7	40
31	Energy intensity modeling for wastewater treatment technologies. Science of the Total Environment, 2018, 630, 1565-1572.	3.9	39
32	Energy intensity of treating drinking water: Understanding the influence of factors. Applied Energy, 2017, 202, 275-281.	5.1	38
33	A management and optimisation model for water supply planning in water deficit areas. Journal of Hydrology, 2014, 515, 139-146.	2.3	37
34	Tariffs and efficient performance by water suppliers: an empirical approach. Water Policy, 2012, 14, 854-864.	0.7	33
35	Efficiency analysis of small franchise enterprises through a DEA metafrontier model. Service Industries Journal, 2012, 32, 2421-2434.	5.0	33
36	Comparing the dynamic performance of wastewater treatment systems: A metafrontier Malmquist productivity index approach. Journal of Environmental Management, 2015, 161, 309-316.	3.8	32

#	Article	IF	CITATIONS
37	Assessment of the Total Factor Productivity Change in the English and Welsh Water Industry: a FĀ r e-Primont Productivity Index Approach. Water Resources Management, 2017, 31, 2389-2405.	1.9	32
38	Evaluation of energy performance of drinking water treatment plants: Use of energy intensity and energy efficiency metrics. Applied Energy, 2018, 229, 1095-1102.	5.1	32
39	How does seasonality affect water reuse possibilities? An efficiency and cost analysis. Resources, Conservation and Recycling, 2012, 58, 125-131.	5.3	30
40	Economic valuation of environmental benefits of removing pharmaceutical and personal care products from WWTP effluents by ozonation. Science of the Total Environment, 2013, 461-462, 409-415.	3.9	29
41	Assessing the relative efficiency of water companies in the English and welsh water industry: a metafrontier approach. Environmental Science and Pollution Research, 2015, 22, 16987-16996.	2.7	29
42	Assessing the efficiency of Chilean water and sewerage companies accounting for uncertainty. Environmental Science and Policy, 2016, 61, 116-123.	2.4	27
43	Techno-economical efficiency and productivity change of wastewater treatment plants: the role of internal and external factors. Journal of Environmental Monitoring, 2011, 13, 3448.	2.1	25
44	Cost modeling for sludge and waste management from wastewater treatment plants: an empirical approach for Spain. Desalination and Water Treatment, 2013, 51, 5414-5420.	1.0	24
45	Estimating the cost of improving service quality in water supply: A shadow price approach for England and wales. Science of the Total Environment, 2016, 539, 470-477.	3.9	24
46	Assessing the productivity change of water companies in England and Wales: A dynamic metafrontier approach. Journal of Environmental Management, 2017, 197, 1-9.	3.8	24
47	A Comparison of Nonparametric Methods in the Graduation of Mortality: Application to Data from the Valencia Region (Spain). International Statistical Review, 2006, 74, 215-233.	1.1	23
48	Economic feasibility study for new technological alternatives in wastewater treatment processes: a review. Water Science and Technology, 2012, 65, 898-906.	1.2	23
49	Eco-efficiency assessment of municipal solid waste services: Influence of exogenous variables. Waste Management, 2021, 130, 136-146.	3.7	23
50	Economic feasibility study for intensive and extensive wastewater treatment considering greenhouse gases emissions. Journal of Environmental Management, 2013, 123, 98-104.	3.8	22
51	The lack of balance in the Spanish First Division football league. European Sport Management Quarterly, 2014, 14, 282-298.	2.3	22
52	Accounting for service quality to customers in the efficiency of water companies: evidence from England and Wales. Water Policy, 2016, 18, 513-532.	0.7	22
53	Assessing productivity changes in water companies: a comparison of the Luenberger and Luenberger-Hicks-Moorsteen productivity indicators. Urban Water Journal, 2018, 15, 626-635.	1.0	21
54	RANKING DECISION MAKING UNITS BY MEANS OF SOFT COMPUTING DEA MODELS. International Journal of Uncertainty, Fuzziness and Knowlege-Based Systems, 2011, 19, 115-134.	0.9	20

#	Article	IF	CITATIONS
55	Performance of fully private and concessionary water and sewerage companies: a metafrontier approach. Environmental Science and Pollution Research, 2016, 23, 11620-11629.	2.7	20
56	Efficiency Assessment of Water and Sewerage Companies: a Disaggregated Approach Accounting for Service Quality. Water Resources Management, 2016, 30, 4311-4328.	1.9	20
57	Marginal abatement cost of carbon dioxide emissions in the provision of urban drinking water. Sustainable Production and Consumption, 2021, 25, 439-449.	5.7	19
58	Assessing disproportionate costs to achieve good ecological status of water bodies in a Mediterranean river basin. Journal of Environmental Monitoring, 2011, 13, 2091.	2.1	18
59	Updating input–output matrices: assessing alternatives through simulation. Journal of Statistical Computation and Simulation, 2009, 79, 1467-1482.	0.7	15
60	Are participants in markets for water rights more efficient in the use of water than non-participants? A case study for LimarÃ-Valley (Chile). Environmental Science and Pollution Research, 2016, 23, 10665-10678.	2.7	15
61	Assessing the quality of service to customers provided by water utilities: A synthetic index approach. Ecological Indicators, 2017, 78, 214-220.	2.6	15
62	Eco-Efficiency of the English and Welsh Water Companies: A Cross Performance Assessment. International Journal of Environmental Research and Public Health, 2021, 18, 2831.	1.2	15
63	A comparison of models for dynamic life tables. Application to mortality data from the Valencia Region (Spain). Lifetime Data Analysis, 2006, 12, 223-244.	0.4	14
64	Cross-national comparison of efficiency for water utilities: a metafrontier approach. Clean Technologies and Environmental Policy, 2016, 18, 1611-1619.	2.1	14
65	Productivity growth of wastewater treatment plants – accounting for environmental impacts: a Malmquist-Luenberger index approach. Urban Water Journal, 2016, 13, 476-485.	1.0	14
66	How much should customers be compensated for interruptions in the drinking water supply?. Science of the Total Environment, 2017, 586, 642-649.	3.9	13
67	Measuring the wastewater treatment plants productivity change: Comparison of the Luenberger and Luenberger-Hicks-Moorsteen Productivity Indicators. Journal of Cleaner Production, 2019, 229, 75-83.	4.6	13
68	Evaluating trends in the performance of Chilean water companies: impact of quality of service and environmental variables. Environmental Science and Pollution Research, 2020, 27, 13155-13165.	2.7	13
69	Benchmarking energy efficiency of water treatment plants: Effects of data variability. Science of the Total Environment, 2020, 701, 134960.	3.9	12
70	Performance assessment of water companies: A metafrontier approach accounting for quality of service and group heterogeneities. Socio-Economic Planning Sciences, 2021, 74, 100948.	2.5	12
71	Life Cycle Costing: a tool to manage the urban water cycle. Journal of Water Supply: Research and Technology - AQUA, 2013, 62, 468-476.	0.6	11
72	Impact of external costs of unplanned supply interruptions on water company efficiency: Evidence from Chile. Utilities Policy, 2020, 66, 101087.	2.1	10

#	Article	IF	CITATIONS
73	Assessing the Quality of Service of Water Companies: a â€ [~] Benefit of the Doubt' Composite Indicator. Social Indicators Research, 2021, 155, 371-387.	1.4	10
74	Measuring operational and quality-adjusted efficiency of Chilean water companies. Npj Clean Water, 2022, 5, .	3.1	10
75	Productivity change of the Spanish Port System: impact of the economic crisis. Maritime Policy and Management, 2016, 43, 683-705.	1.9	9
76	Dynamic goal programming synthetic indicator: an application for water companies sustainability assessment. Urban Water Journal, 2018, 15, 592-600.	1.0	9
77	Evaluating the Eco-Efficiency of Wastewater Treatment Plants: Comparison of Optimistic and Pessimistic Approaches. Sustainability, 2020, 12, 10580.	1.6	9
78	Comparing Operational, Environmental and Eco-Efficiency of Water Companies in England and Wales. Energies, 2021, 14, 3635.	1.6	9
79	Decomposition of Productivity Growth of Water and Sewerage Companies: An Empirical Approach for Chile. Water Resources Management, 2017, 31, 4309-4321.	1.9	7
80	Assessment of Energy Efficiency and Its Determinants for Drinking Water Treatment Plants Using A Double-Bootstrap Approach. Energies, 2019, 12, 765.	1.6	7
81	Estimating Profit, Price, and Productivity Changes in Water Industry Using Bennet-Bowley Indicator. Journal of Water Resources Planning and Management - ASCE, 2019, 145, 04019011.	1.3	7
82	Water company productivity change: A disaggregated approach accounting for changes in inputs and outputs. Utilities Policy, 2021, 70, 101190.	2.1	7
83	Cost-effectiveness analysis of sewer mining versus centralized wastewater treatment: Case study of the Arga river basin, Spain. Urban Water Journal, 2016, 13, 321-330.	1.0	6
84	Benchmarking the economic and environmental performance of water utilities: a comparison of frontier techniques. Benchmarking, 2022, 29, 3176-3193.	2.9	6
85	Estimating performance and savings of water leakages and unplanned water supply interruptions in drinking water providers. Resources, Conservation and Recycling, 2022, 186, 106538.	5.3	6
86	Economic Feasibility Study for Improving Drinking Water Quality: A Case Study of Arsenic Contamination in Rural Argentina. EcoHealth, 2014, 11, 476-490.	0.9	5
87	Assessment of the Total Factor Productivity Change in the Spanish Ports: Hicks–Moorsteen Productivity Index Approach. Journal of Waterway, Port, Coastal and Ocean Engineering, 2016, 142, .	0.5	4
88	Changes in the total costs of the English and Welsh water and sewerage industry: The decomposed effect of price and quantity inputs on efficiency. Utilities Policy, 2020, 66, 101063.	2.1	4
89	Financial winners and losers since the privatization of the English and Welsh water and sewerage industry: a profit decomposition approach. Urban Water Journal, 2020, 17, 224-234.	1.0	4
90	Pricing for Reclaimed Water in Valencia, Spain: Externalities and Cost Recovery. Global Issues in Water Policy, 2015, , 431-442.	0.1	4

#	Article	IF	CITATIONS
91	Fuzzy Linear Programming in Practice: An Application to the Spanish Football League. Studies in Fuzziness and Soft Computing, 2010, , 503-528.	0.6	4
92	Measuring the eco-efficiency of the provision of drinking water by two-stage network data envelopment analysis. Environment, Development and Sustainability, 0, , 1.	2.7	4
93	Performance assessment of the Chilean water sector: A network data envelopment analysis approach. Utilities Policy, 2022, 75, 101350.	2.1	4
94	Measuring technical, environmental and eco-efficiency in municipal solid waste management in Chile. International Journal of Sustainable Engineering, 2022, 15, 71-85.	1.9	4
95	Assessing the marginal cost of reducing greenhouse gas emissions in the English and Welsh water and sewerage industry: A parametric approach. Utilities Policy, 2021, 70, 101193.	2.1	3
96	Changes to The Productivity of Water Companies: Comparison of Fully Private and Concessionary Water Companies. Water Resources Management, 2021, 35, 3355-3371.	1.9	3
97	The Influence of Seasonality on the Economic Efficiency of Wastewater Treatment Plants. NATO Science for Peace and Security Series C: Environmental Security, 2011, , 65-74.	0.1	3
98	Assessing the dynamic eco-efficiency of Italian municipalities by accounting for the ownership of the entrusted waste utilities. Utilities Policy, 2021, 73, 101311.	2.1	3
99	Productive Efficiency and Territorial Externalities in Small and Mediumâ€ s ized Industrial Firms: A Dynamic Analysis of the District Effect. Growth and Change, 2012, 43, 179-197.	1.3	2
100	Total factor productivity assessment of water and sanitation services: an empirical application including quality of service factors. Environmental Science and Pollution Research, 2021, 28, 37818-37829.	2.7	2
101	Estimation of greenhouse gases shadow price in the English and Welsh water industry. Environmental Science and Pollution Research, 2022, 29, 16612-16623.	2.7	2
102	How Much Does it Cost to Collect Recyclable and Residual Waste in Medium-Income Countries? A Case Study in the Chilean Waste Sector. Journal of the Air and Waste Management Association, 0, , .	0.9	2
103	Voluntary Agreements to Promote the Use of Reclaimed Water at Tordera River Basin. Global Issues in Water Policy, 2015, , 379-392.	0.1	1
104	Feasibility Studies for Water Reuse Projects: Economic Valuation of Environmental Benefits. NATO Science for Peace and Security Series C: Environmental Security, 2011, , 181-190.	0.1	0
105	Drivers of productivity change: a comparison of English and Welsh water only and water and sewerage companies. Urban Water Journal, 2021, 18, 342-351.	1.0	0
106	TECHNICAL EFFICIENCY OF IBERIAN PORT AUTHORITIES BY SPECIALIZATION: A DEA METAFRONTIER APPROACH. Rect@, 2017, 18, 37-51.	0.1	0