Karel Folens

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4642253/publications.pdf

Version: 2024-02-01

		567281	414414
32	1,285	15	32
papers	citations	h-index	g-index
33	33	33	1984
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Technologies for Arsenic Removal from Water: Current Status and Future Perspectives. International Journal of Environmental Research and Public Health, 2016, 13, 62.	2.6	320
2	Near-zero-waste processing of low-grade, complex primary ores and secondary raw materials in Europe: technology development trends. Resources, Conservation and Recycling, 2020, 160, 104919.	10.8	114
3	Ship-in-a-bottle CMPO in MIL-101(Cr) for selective uranium recovery from aqueous streams through adsorption. Journal of Hazardous Materials, 2017, 335, 1-9.	12.4	90
4	Removal of arsenic and mercury species from water by covalent triazine framework encapsulated \hat{I}^3 -Fe2O3 nanoparticles. Journal of Hazardous Materials, 2018, 353, 312-319.	12.4	83
5	Functionalized chitosan adsorbents allow recovery of palladium and platinum from acidic aqueous solutions. Green Chemistry, 2019, 21, 2295-2306.	9.0	81
6	Progress in hydrometallurgical technologies to recover critical raw materials and precious metals from low-concentrated streams. Resources, Conservation and Recycling, 2019, 142, 177-188.	10.8	73
7	Fe ₃ O ₄ @MILâ€101 – A Selective and Regenerable Adsorbent for the Removal of As Species from Water. European Journal of Inorganic Chemistry, 2016, 2016, 4395-4401.	2.0	72
8	UiO-66-(SH) ₂ as stable, selective and regenerable adsorbent for the removal of mercury from water under environmentally-relevant conditions. Faraday Discussions, 2017, 201, 145-161.	3.2	67
9	Effect of speciation and composition on the kinetics and precipitation of arsenic sulfide from industrial metallurgical wastewater. Journal of Hazardous Materials, 2021, 409, 124418.	12.4	49
10	Identification of platinum nanoparticles in road dust leachate by single particle inductively coupled plasma-mass spectrometry. Science of the Total Environment, 2018, 615, 849-856.	8.0	47
11	Dialdehyde carboxymethyl cellulose cross-linked chitosan for the recovery of palladium and platinum from aqueous solution. Reactive and Functional Polymers, 2019, 141, 145-154.	4.1	47
12	Chemical and economic optimization of the coagulation-flocculation process for silver removal and recovery from industrial wastewater. Separation and Purification Technology, 2017, 179, 145-151.	7.9	40
13	Selective and enhanced nickel adsorption from sulfate- and calcium-rich solutions using chitosan. Separation and Purification Technology, 2021, 276, 119283.	7.9	22
14	Improved Quantum Yield and Excellent Luminescence Stability of Europiumâ€Incorporated Polymeric Hydrogenâ€Bonded Heptazine Frameworks Due to an Efficient Hydrogenâ€Bonding Effect. Advanced Functional Materials, 2020, 30, 2003656.	14.9	20
15	Partitioning of Ag and CeO2 nanoparticles versus Ag and Ce ions in soil suspensions and effect of natural organic matter on CeO2 nanoparticles stability. Chemosphere, 2018, 200, 471-480.	8.2	17
16	Lanthanide-centered luminescence evolution and potential anti-counterfeiting application of Tb ³⁺ /Eu ³⁺ grafted melamine cyanurate hydrogen-bonded triazine frameworks. Materials Chemistry Frontiers, 2019, 3, 579-586.	5.9	15
17	Selective metal extraction by biologically produced siderophores during bioleaching from low-grade primary and secondary mineral resources. Minerals Engineering, 2021, 163, 106774.	4.3	14
18	Biosorption of residual cisplatin, carboplatin and oxaliplatin antineoplastic drugs in urine after chemotherapy treatment. Environmental Chemistry, 2018, 15, 506.	1.5	14

#	Article	IF	CITATIONS
19	Impact of an Urban Environment on Trace Element Concentrations in Domestically Produced Lettuce (Lactuca sativa L.). Water, Air, and Soil Pollution, 2017, 228, 1.	2.4	11
20	Oxygen-rich poly-bisvanillonitrile embedded amorphous zirconium oxide nanoparticles as reusable and porous adsorbent for removal of arsenic species from water. Journal of Hazardous Materials, 2021, 413, 125356.	12.4	11
21	Copper and zinc extraction from automobile shredder residues via an integrated electrodeposition and crystallization process. Resources, Conservation and Recycling, 2021, 172, 105672.	10.8	11
22	Conjoint bioleaching and zinc recovery from an iron oxide mineral residue by a continuous electrodialysis system. Hydrometallurgy, 2020, 195, 105409.	4.3	10
23	Leaching behaviour of different scrap materials at recovery and recycling companies: Full-, pilot- and lab-scale investigation. Waste Management, 2014, 34, 2674-2686.	7.4	9
24	Dispersion and solubility of In, Tl, Ta and Nb in the aquatic environment and intertidal sediments of the Scheldt estuary (Flanders, Belgium). Chemosphere, 2017, 183, 401-409.	8.2	9
25	Valorization of selenium-enriched sludge and duckweed generated from wastewater as micronutrient biofertilizer. Chemosphere, 2021, 281, 130767.	8.2	8
26	Citrate-Mediated Hydrometallurgical Lead Extraction and Integrated Electrochemical Recovery from Zinc Leaching Residue. ACS Sustainable Chemistry and Engineering, 2021, 9, 9282-9288.	6.7	7
27	Chemical fractionation and speciation modelling for optimization of ion-exchange processes to recover palladium from industrial wastewater. Water Science and Technology, 2016, 73, 1738-1745.	2.5	6
28	Excitation dependent multicolour luminescence and colour blue-shifted afterglow at room-temperature of europium incorporated hydrogen-bonded multicomponent frameworks. Journal of Materials Chemistry C, 2021, 9, 7154-7162.	5.5	6
29	Rational design of lanthanide nano periodic mesoporous organosilicas (Ln-nano-PMOs) for near-infrared emission. Dalton Transactions, 2021, 50, 2774-2781.	3.3	6
30	Modelling and sensitivity analysis of urinary platinum excretion in anticancer chemotherapy for the recovery of platinum. Sustainable Chemistry and Pharmacy, 2016, 4, 46-56.	3.3	3
31	Physical–chemical treatment of rainwater runoff in recovery and recycling companies: lab-scale investigation. Environmental Technology (United Kingdom), 2018, 39, 2251-2265.	2.2	2
32	Combined Hydro–Solvo–Bioleaching Approach toward the Valorization of a Sulfidic Copper Mine Tailing. Industrial & Damp; Engineering Chemistry Research, 2022, 61, 684-693.	3.7	1