List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/464164/publications.pdf Version: 2024-02-01

NIKOLAI KASHAEV

#	Article	IF	CITATIONS
1	Effect of laser shock peening without protective coating on the surface mechanical properties of NiTi alloy. Journal of Alloys and Compounds, 2022, 896, 163011.	5.5	19
2	On the relationship between microstructure and residual stress in laser-shock-peened Ti-6Al-4V. Journal of Alloys and Compounds, 2022, 900, 163383.	5.5	26
3	Coupled Modeling Approach for Laser Shock Peening of AA2198-T3: From Plasma and Shock Wave Simulation to Residual Stress Prediction. Metals, 2022, 12, 107.	2.3	4
4	Effect of pre-heating and post-weld heat treatment on structure and mechanical properties of laser beam-welded Ti2AlNb-based joints. Intermetallics, 2022, 143, 107466.	3.9	11
5	Effect of laser peen forming process parameters on bending and surface quality of Ti-6Al-4V sheets. Journal of Materials Processing Technology, 2022, 305, 117578.	6.3	11
6	Coaxial laser directed energy deposition with wire of thin-walled duplex stainless steel parts: Process discontinuities and their impact on the mechanical properties. CIRP Journal of Manufacturing Science and Technology, 2022, 37, 443-453.	4.5	7
7	On the analysis of plasticity induced crack closure in welded specimens: A mechanism controlled by the stress intensity factor resulting from residual stresses. International Journal of Fatigue, 2022, 162, 106940.	5.7	7
8	Experimental and numerical investigation of laser beam-welded Al–Cu–Li joints using micro-mechanical characteristics. Journal of Materials Research and Technology, 2022, 19, 2431-2446.	5.8	3
9	INFLUENCE OF LASER SHOCK PEENING ON LOW- AND HIGH-CYCLE FATIGUE OF AN OT4-0 TITANIUM ALLOY. Journal of Applied Mechanics and Technical Physics, 2022, 63, 335-342.	0.5	1
10	Exploring Structural Changes, Manufacturing, Joining, and Repair of Intermetallic γâ€TiAlâ€Based Alloys: Recent Progress Enabled by In Situ Synchrotron Xâ€Ray Techniques. Advanced Engineering Materials, 2021, 23, 2000947.	3.5	9
11	Experimental-numerical study of laser-shock-peening-induced retardation of fatigue crack propagation in Ti-17 titanium alloy. International Journal of Fatigue, 2021, 145, 106081.	5.7	32
12	Phase-field modelling for fatigue crack growth under laser shock peening-induced residual stresses. Archive of Applied Mechanics, 2021, 91, 3709-3723.	2.2	19
13	Laser Beam Welding of a Ti-15Mo/TiB Metal–Matrix Composite. Metals, 2021, 11, 506.	2.3	14
14	Experimental and numerical thermo-mechanical analysis of wire-based laser metal deposition of Al-Mg alloys. Journal of Manufacturing Processes, 2021, 64, 982-995.	5.9	21
15	Compression Behaviour of Wire + Arc Additive Manufactured Structures. Metals, 2021, 11, 877.	2.3	7
16	The Effect of LSP on the Structure Evolution and Self-Heating of ARMCO Iron under Cyclic Loading. Metals, 2021, 11, 1198.	2.3	4
17	Effect of filler wire and post weld heat treatment on the mechanical properties of laser beam-welded AA2198. Materials Characterization, 2021, 178, 111257.	4.4	9
18	Damage tolerant design of additively manufactured metallic components subjected to cyclic loading: State of the art and challenges. Progress in Materials Science, 2021, 121, 100786.	32.8	106

#	Article	IF	CITATIONS
19	In situ observation of competitive growth of α grains during β →Âα transformation in laser beam manufactured TiAl alloys. Materials Characterization, 2021, 179, 111371.	4.4	9
20	On the prediction of fatigue crack growth based on weight functions in residual stress fields induced by laser shock peening and laser heating. Fatigue and Fracture of Engineering Materials and Structures, 2021, 44, 3463.	3.4	1
21	Tailoring of residual stresses by specific use of defined prestress during laser shock peening. Journal of Materials Processing Technology, 2021, 295, 117154.	6.3	9
22	Effect of laser heating on mechanical properties, residual stresses and retardation of fatigue crack growth in AA2024. Fatigue and Fracture of Engineering Materials and Structures, 2021, 44, 887-900.	3.4	2
23	Effect of laser beam welding on microstructure, tensile strength and fatigue behaviour of duplex stainless steel 2205. Journal of Manufacturing Processes, 2021, 72, 148-158.	5.9	24
24	Simulation of fatigue crack growth in residualâ€stressâ€afflicted specimen with a phaseâ€field model. Proceedings in Applied Mathematics and Mechanics, 2021, 21, .	0.2	0
25	Probabilistic Reliability Assessment of a Component in the Presence of Internal Defects. Lecture Notes in Mechanical Engineering, 2020, , 488-502.	0.4	2
26	Fatigue Crack Propagation Influenced by Laser Shock Peening Introduced Residual Stress Fields in Aluminium Specimens. Lecture Notes in Mechanical Engineering, 2020, , 617-631.	0.4	1
27	Microstructure by design: An approach of grain refinement and isotropy improvement in multi-layer wire-based laser metal deposition. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 772, 138635.	5.6	42
28	On the influence of laser beam welding parameters for autogenous AA2198 welded joints. International Journal of Advanced Manufacturing Technology, 2020, 110, 2079-2092.	3.0	14
29	The Influence of Laser Shock Peening on Fatigue Properties of AA2024-T3 Alloy with a Fastener Hole. Metals, 2020, 10, 495.	2.3	14
30	Single-shot femtosecond laser processing of Al-alloy surface: An interplay between Mbar shock waves, enhanced microhardness, residual stresses, and chemical modification. Optics and Laser Technology, 2020, 126, 106131.	4.6	13
31	On the application of laser shock peening for retardation of surface fatigue cracks in laser beamâ€welded AA6056. Fatigue and Fracture of Engineering Materials and Structures, 2020, 43, 1500-1513.	3.4	20
32	Comparison of different titanium alloys welded by Yb:YAG fibre laser for thin sheet applications used for T-ducts in bleed air systems. MATEC Web of Conferences, 2020, 321, 11027.	0.2	1
33	Laser shock peening on high-strength steel. , 2020, , .		Ο
34	Development of laser straightening (LS) strategies to remove distortion in welded aeronautical structures. AIP Conference Proceedings, 2019, , .	0.4	0
35	Thermal analysis of wire-based direct energy deposition of Al-Mg using different laser irradiances. Additive Manufacturing, 2019, 29, 100800.	3.0	17
36	Numerical study of rolling process on the plastic strain distribution in wire + arc additive manufactured Ti-6Al-4V. AIP Conference Proceedings, 2019, , .	0.4	0

#	Article	IF	CITATIONS
37	Effect of Laser Peening Process Parameters and Sequences on Residual Stress Profiles. Metals, 2019, 9, 655.	2.3	28
38	Numerical Investigation of the Effect of Rolling on the Localized Stress and Strain Induction for Wire + Arc Additive Manufactured Structures. Journal of Materials Engineering and Performance, 2019, 28, 4931-4942.	2.5	30
39	Crack closure mechanisms in residual stress fields generated by laser shock peening: A combined experimental-numerical approach. Engineering Fracture Mechanics, 2019, 221, 106630.	4.3	29
40	Fatigue behaviour of a laser beam welded CoCrFeNiMn-type high entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 766, 138358.	5.6	59
41	Application of design of experiments for laser shock peening process optimization. International Journal of Advanced Manufacturing Technology, 2019, 102, 1567-1581.	3.0	22
42	Twoâ€step simulation approach for laser shock peening. Proceedings in Applied Mathematics and Mechanics, 2019, 19, e201900497.	0.2	1
43	Laser Beam Welding of a Low Density Refractory High Entropy Alloy. Metals, 2019, 9, 1351.	2.3	22
44	Experimentally validated multi-step simulation strategy to predict the fatigue crack propagation rate in residual stress fields after laser shock peening. International Journal of Fatigue, 2019, 124, 265-276.	5.7	40
45	Laser welding and microstructural characterization of dissimilar γ-TiAl-Ti6242 joints. Intermetallics, 2019, 104, 74-83.	3.9	7
46	Improving the fatigue performance of airframe structures by combining geometrical modifications and laser heating. Fatigue and Fracture of Engineering Materials and Structures, 2018, 41, 1183-1195.	3.4	3
47	Investigating the impact of sustainability in the production of aeronautical subscale components. Journal of Cleaner Production, 2018, 176, 785-799.	9.3	23
48	Laser beam welding of a CoCrFeNiMn-type high entropy alloy produced by self-propagating high-temperature synthesis. Intermetallics, 2018, 96, 63-71.	3.9	83
49	Experimental and numerical investigation of residual stresses in laser shock peened AA2198. Journal of Materials Processing Technology, 2018, 255, 294-307.	6.3	92
50	Hot cracking behaviour of an autogenously laser welded Al-Cu-Li alloy. International Journal of Advanced Manufacturing Technology, 2018, 95, 299-310.	3.0	22
51	Microstructural Characteristics of Laser Metal Deposited Magnesium Alloy AZ31. Materials Science Forum, 2018, 941, 1004-1009.	0.3	2
52	Influence of different Al-Cu substrates on the properties of laser metal deposited Al coatings. Procedia CIRP, 2018, 74, 127-130.	1.9	1
53	Parameter development and characterization of laser metal deposited Ti alloy powders for use at elevated temperatures. Procedia CIRP, 2018, 74, 176-179.	1.9	2
54	Surface modification methods for fatigue properties improvement of laser-beam-welded Ti-6Al-4V butt joints. Procedia Structural Integrity, 2018, 13, 273-278.	0.8	18

#	Article	IF	CITATIONS
55	Microstructure and hardness evolution of laser metal deposited AA5087 wall-structures. Procedia CIRP, 2018, 74, 131-135.	1.9	7
56	Prospects of laser beam welding and friction stir welding processes for aluminum airframe structural applications. Journal of Manufacturing Processes, 2018, 36, 571-600.	5.9	256
57	Development of an Optimised Shielding Strategy for Laser Beam Welding of Ti6Al2Sn4Zr2Mo. Materials Science Forum, 2018, 941, 1404-1410.	0.3	Ο
58	Precipitation Kinetics of AA6082: An Experimental and Numerical Investigation. Materials Science Forum, 2018, 941, 1411-1417.	0.3	2
59	Experimental Investigation of Temperature Distribution during Wire-Based Laser Metal Deposition of the Al-Mg Alloy 5087. Materials Science Forum, 2018, 941, 988-994.	0.3	7
60	Fatigue Life Extension of AA2024 Specimens and Integral Structures by Laser Shock Peening. MATEC Web of Conferences, 2018, 165, 18001.	0.2	6
61	Multiscale process simulation of residual stress fields of laser beam welded precipitation hardened AA6082. Materialia, 2018, 3, 243-255.	2.7	8
62	Microstructure and microhardness of wire-based laser metal deposited AA5087 using an Ytterbium fibre laser. Materials Characterization, 2018, 143, 59-67.	4.4	28
63	Probabilistic fatigue-life assessment model for laser-welded Ti-6Al-4V butt joints in the high-cycle fatigue regime. International Journal of Fatigue, 2018, 116, 22-35.	5.7	40
64	Process development for wire-based laser metal deposition of 5087 aluminium alloy by using fibre laser. Journal of Manufacturing Processes, 2018, 34, 721-732.	5.9	51
65	Thermal analysis of laser additive manufacturing of aluminium alloys: Experiment and simulation. AIP Conference Proceedings, 2018, , .	0.4	8
66	Metallurgical aspects of joining commercially pure titanium to Ti-6Al-4V alloy in a T-joint configuration by laser beam welding. International Journal of Advanced Manufacturing Technology, 2018, 97, 2019-2031.	3.0	26
67	Effects of laser shock peening on the microstructure and fatigue crack propagation behaviour of thin AA2024 specimens. International Journal of Fatigue, 2017, 98, 223-233.	5.7	69
68	Fiber laser welding of dissimilar titanium (Ti-6Al-4V/cp-Ti) T-joints and their laser forming process for aircraft application. Optics and Laser Technology, 2017, 96, 123-131.	4.6	35
69	Microstructure and mechanical performance of autogenously fibre laser beam welded Ti-6242 butt joints. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 694, 110-120.	5.6	13
70	Artificial neural network for correction of effects of plasticity in equibiaxial residual stress profiles measured by hole drilling. Journal of Strain Analysis for Engineering Design, 2017, 52, 137-151.	1.8	33
71	Mechanical properties of laser beam welded similar and dissimilar aluminum alloys. Journal of Manufacturing Processes, 2017, 29, 272-280.	5.9	33
72	Anisotropy and size effect in tensile mechanical properties of Al-Cu-Li 2198 alloy. Procedia Structural Integrity, 2017, 5, 13-18.	0.8	18

Νικοίαι Κάσηαεν

#	Article	IF	CITATIONS
73	Material Influence on Crenellation Effectiveness in Damage Tolerant Design. Procedia Structural Integrity, 2017, 5, 263-270.	0.8	0
74	Influence of Porosity on the High Cycle Fatigue Behaviour of Laser Beam Welded Ti-6Al-4V Butt Joints. Procedia Structural Integrity, 2017, 7, 415-422.	0.8	17
75	Laser shock peening process modelling and experimental validation of AA2198â€T3 and AA2198â€T8. Proceedings in Applied Mathematics and Mechanics, 2017, 17, 423-424.	0.2	1
76	Laser Metal Deposition of Ti-6Al-4V Structures: Analysis of the Build Height Dependent Microstructure and Mechanical Properties. , 2017, , .		3
77	Process Optimization of Dual-Laser Beam Welding of Advanced Al-Li Alloys Through Hot Cracking Susceptibility Modeling. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 3533-3544.	2.2	30
78	Influence of crystallographic texture on the microstructure, tensile properties and residual stress state of laser-welded titanium joints. Materials and Design, 2016, 101, 137-145.	7.0	25
79	Laser Weldability of High-Strength Al-Zn Alloys and Its Improvement by the Use of an Appropriate Filler Material. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 2830-2841.	2.2	9
80	Effect of artificial aging on the mechanical performance of (Al-Cu) 2024 and (Al-Cu-Li) 2198 aluminum alloys. Procedia Structural Integrity, 2016, 2, 3782-3783.	0.8	11
81	Phase Transformations During Solidification of a Laser-Beam-Welded TiAl Alloy—An In Situ Synchrotron Study. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 5761-5770.	2.2	6
82	Effect of elasto-plastic material behaviour on determination of residual stress profiles using the hole drilling method. Journal of Strain Analysis for Engineering Design, 2016, 51, 572-581.	1.8	26
83	Fiber Laser Beam Welding of Ti-6242 - Effect of Processing Parameters on Microstructural and Mechanical Properties. Materials Science Forum, 2016, 879, 903-908.	0.3	3
84	Phase Transformation and Residual Stress in a Laser Beam Spot-Welded TiAl-Based Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 5750-5760.	2.2	8
85	Fibre laser welding of high-alloyed Al–Zn–Mg–Cu alloys. Journal of Materials Processing Technology, 2016, 237, 155-162.	6.3	43
86	Effect of Nd:YAG laser beam welding on weld morphology and mechanical properties of Ti–6Al–4V butt joints and T-joints. Optics and Lasers in Engineering, 2016, 86, 172-180.	3.8	59
87	Laser beam welded structures for a regional aircraft: weight, cost and carbon footprint savings. Journal of Manufacturing Systems, 2016, 39, 38-52.	13.9	28
88	Optimization of crenellation patterns for fatigue crack retardation via genetic algorithm and the reduction in computational cost. Engineering Failure Analysis, 2016, 63, 21-30.	4.0	5
89	Review of Residual Stress Modification Techniques for Extending the Fatigue Life of Metallic Aircraft Components. Applied Mechanics Reviews, 2015, 67, .	10.1	46
90	Crenellation Patterns for Fatigue Crack Retardation in Fuselage Panels Optimized via Genetic Algorithm. Procedia Engineering, 2015, 114, 248-254.	1.2	2

#	Article	IF	CITATIONS
91	Fracture mechanical behaviour of laser beam-welded AA2198 butt joints and integral structures. International Journal of Structural Integrity, 2015, 6, 787-798.	3.3	9
92	Influence of the geometry on the fatigue performance of crenellated fuselage panels. Ciência & Tecnologia Dos Materiais, 2015, 27, 100-107.	0.5	3
93	Microstructure and Mechanical Properties of Laser Beam Welded Joints between Fineâ€Grained and Standard Tiâ€6Alâ€4V Sheets Subjected to Superplastic Forming. Advanced Engineering Materials, 2015, 17, 374-382.	3.5	12
94	Oxidized Mild Steel S235: An Efficient Anode for Electrocatalytically Initiated Water Splitting. ChemSusChem, 2015, 8, 3099-3110.	6.8	50
95	Experimental and numerical crushing analyses of thin-walled magnesium profiles. International Journal of Crashworthiness, 2015, 20, 177-190.	1.9	27
96	Assessment of alternative joining techniques for Ti–6Al–4V/CFRP hybrid joints regarding tensile and fatigue strength. Materials & Design, 2015, 81, 73-81.	5.1	52
97	Application of the eigenstrain approach to predict the residual stress distribution in laser shock peened AA7050-T7451 samples. Surface and Coatings Technology, 2015, 273, 39-49.	4.8	28
98	In situ study of phase transformations during laser-beam welding of a TiAl alloy for grain refinement and mechanical property optimization. Intermetallics, 2015, 62, 27-35.	3.9	26
99	Single-sided laser beam welding of a dissimilar AA2024–AA7050 T-joint. Materials & Design, 2015, 76, 110-116.	5.1	43
100	Design of Local Heat Treatment for Crack Retardation in Aluminium Alloys. Procedia Engineering, 2015, 114, 271-276.	1.2	7
101	A parametric study of laser spot size and coverage on the laser shock peening induced residual stress in thin aluminium samples. Journal of Engineering, 2015, 2015, 97-105.	1.1	17
102	Laser Weldability of Different Al-Zn Alloys and its Improvement. Materials Science Forum, 2015, 828-829, 389-394.	0.3	5
103	Ultrafine Sanding Paper: A Simple Tool for Creating Small Particles. Small, 2015, 11, 931-935.	10.0	15
104	Material saving and cost reduction with hot forming of Uâ€shaped titanium part. Materialwissenschaft Und Werkstofftechnik, 2014, 45, 841-846.	0.9	4
105	Effect of Post-weld Heat Treatment on Microstructure and Mechanical Properties of Laser Beam Welded TiAl-based Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 16-28.	2.2	8
106	Laser Welding of High-strength Aluminium Alloys for the Sheet Metal Forming Process. Procedia CIRP, 2014, 18, 203-208.	1.9	17
107	Fracture Behavior of a Laser Beam Welded High-strength Al-Zn Alloy. , 2014, 3, 1828-1833.		5
108	The Development of the Rotational Friction Welding Process for the Welding of γ-TiAl-Casting Alloy Ti-47Al-3.5(Mn+Cr+Nb)-0.8(B+Si) to Ti6Al4V. Praktische Metallographie/Practical Metallography, 2014, 51, 321-352.	0.3	0

#	Article	IF	CITATIONS
109	Comparative study of mechanical properties using standard and micro-specimens of base materials Inconel 625, Inconel 718 and Ti-6Al-4V. Journal of Materials Research and Technology, 2013, 2, 43-47.	5.8	33
110	The effect of heat treatment on crack control and grain refinement in laser beam welded β-solidifying TiAl-based alloy. Intermetallics, 2013, 40, 65-70.	3.9	48
111	Investigation of In Situ and Conventional Postâ€Weld Heat Treatments on Dualâ€Laserâ€Beamâ€Welded γâ€TiAlâ€Based Alloy. Advanced Engineering Materials, 2012, 14, 923-927.	3.5	14
112	Influence of the Local Chemical Composition on the Mechanical Properties of Laser Beam Welded Al-Li Alloys. Physics Procedia, 2012, 39, 51-58.	1.2	41
113	Assessment of the application potential of the intensified glow discharge for industrial plasma nitriding of Ti-6Al-4V. Surface and Coatings Technology, 2005, 200, 502-506.	4.8	16
114	Nitriding of Ti – 6% Al – 4% V Alloy in the Plasma of an Intensified Glow Discharge. Metal Science and Heat Treatment, 2004, 46, 294-298.	0.6	15
115	Untersuchungen zur Ermittlung des Anwendungspotenzials für das Nitrieren von TiAl6V4 in einer intensivierten Glimmentladung. HTM - Journal of Heat Treatment and Materials, 2004, 59, 439-444.	0.2	0
116	Crashworthiness of Magnesium Sheet Structures. Materials Science Forum, 0, 765, 590-594.	0.3	10
117	Fatigue and Fatigue Crack Propagation of Laser Beam-Welded AA2198 Joints and Integral Structures. Advanced Materials Research, 0, 891-892, 1457-1462.	0.3	8
118	Fatigue, Fatigue Crack Propagation and Mechanical Fracture Behaviour of Laser Beam-Welded AZ31 Magnesium Sheets. Materials Science Forum, 0, 783-786, 2310-2315.	0.3	4
119	Mechanical Properties of Fibre Laser Welded AZ31B Sheets and their Dependence on the Spot-Size. Materials Science Forum, 0, 828-829, 298-304.	0.3	1
120	<i>In Situ</i> Experiment for Laser Beam Welding of Ti Alloys Using High-Energy X-Rays. Materials Science Forum, 0, 905, 114-119.	0.3	0
121	Effect of Microstructure Transformations on Fatigue Properties of Laser Beam Welded Tiâ€6Alâ€4V Butt Joints Subjected to Postweld Heat Treatment. , 0, , .		8
122	Use of Novel Welding Technologies for High-Entropy Alloys Joining. Materials Science Forum, 0, 941, 919-924.	0.3	8