Robinson I NegrÃ³n-JuÃ;rez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4641526/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The steady-state mosaic of disturbance and succession across an old-growth Central Amazon forest landscape. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3949-3954.	3.3	186
2	Global satellite monitoring of climate-induced vegetation disturbances. Trends in Plant Science, 2015, 20, 114-123.	4.3	183
3	Widespread Amazon forest tree mortality from a single crossâ€basin squall line event. Geophysical Research Letters, 2010, 37, .	1.5	116
4	Impacts of tropical cyclones on U.S. forest tree mortality and carbon flux from 1851 to 2000. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7888-7892.	3.3	85
5	Controls on terrestrial carbon feedbacks by productivity versus turnover in the CMIP5 Earth System Models. Biogeosciences, 2015, 12, 5211-5228.	1.3	81
6	Large-Scale Wind Disturbances Promote Tree Diversity in a Central Amazon Forest. PLoS ONE, 2014, 9, e103711.	1.1	75
7	Monoterpene â€~ <i>thermometer</i> ' of tropical forestâ€atmosphere response to climate warming. Plant, Cell and Environment, 2017, 40, 441-452.	2.8	52
8	Detection of subpixel treefall gaps with Landsat imagery in Central Amazon forests. Remote Sensing of Environment, 2011, 115, 3322-3328.	4.6	51
9	Observed allocations of productivity and biomass, and turnover times in tropical forests are not accurately represented in CMIP5 Earth system models. Environmental Research Letters, 2015, 10, 064017.	2.2	51
10	Vulnerability of Amazon forests to storm-driven tree mortality. Environmental Research Letters, 2018, 13, 054021.	2.2	49
11	Dry and hot: the hydraulic consequences of a climate change–type drought for Amazonian trees. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20180209.	1.8	49
12	Internal respiration of Amazon tree stems greatly exceeds external CO ₂ efflux. Biogeosciences, 2012, 9, 4979-4991.	1.3	44
13	Windthrows control biomass patterns and functional composition of Amazon forests. Global Change Biology, 2018, 24, 5867-5881.	4.2	43
14	Landscapeâ€ s cale consequences of differential tree mortality from catastrophic wind disturbance in the Amazon. Ecological Applications, 2016, 26, 2225-2237.	1.8	38
15	Lack of intermediateâ€scale disturbance data prevents robust extrapolation of plotâ€level tree mortality rates for oldâ€growth tropical forests. Ecology Letters, 2009, 12, E22.	3.0	37
16	Assessing hurricaneâ€induced tree mortality in U.S. Gulf Coast forest ecosystems. Journal of Geophysical Research, 2010, 115, .	3.3	37
17	Carbon dioxide emitted from live stems of tropical trees is several years old. Tree Physiology, 2013, 33, 743-752.	1.4	37
18	Remote sensing and statistical analysis of the effects of hurricane MarÃa on the forests of Puerto Rico. Remote Sensing of Environment, 2020, 247, 111940.	4.6	36

#	Article	IF	CITATIONS
19	Multi-scale sensitivity of Landsat and MODIS to forest disturbance associated with tropical cyclones. Remote Sensing of Environment, 2014, 140, 679-689.	4.6	33
20	Mechanical vulnerability and resistance to snapping and uprooting for Central Amazon tree species. Forest Ecology and Management, 2016, 380, 1-10.	1.4	33
21	Windthrow Variability in Central Amazonia. Atmosphere, 2017, 8, 28.	1.0	29
22	The Central Amazon Biomass Sink Under Current and Future Atmospheric CO ₂ : Predictions From Big‣eaf and Demographic Vegetation Models. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005500.	1.3	23
23	Windthrows increase soil carbon stocks in a central Amazon forest. Biogeosciences, 2016, 13, 1299-1308.	1.3	22
24	A reporting format for leaf-level gas exchange data and metadata. Ecological Informatics, 2021, 61, 101232.	2.3	22
25	Remote Sensing Assessment of Forest Disturbance across Complex Mountainous Terrain: The Pattern and Severity of Impacts of Tropical Cyclone Yasi on Australian Rainforests. Remote Sensing, 2014, 6, 5633-5649.	1.8	21
26	Critical wind speeds suggest wind could be an important disturbance agent in Amazonian forests. Forestry, 2019, 92, 444-459.	1.2	21
27	A metadata reporting framework (FRAMES) for synthesis of ecohydrological observations. Ecological Informatics, 2017, 42, 148-158.	2.3	18
28	Predicting biomass of hyperdiverse and structurally complex central Amazonian forests – a virtual approach using extensive field data. Biogeosciences, 2016, 13, 1553-1570.	1.3	17
29	Species-Specific Shifts in Diurnal Sap Velocity Dynamics and Hysteretic Behavior of Ecophysiological Variables During the 2015–2016 El Niño Event in the Amazon Forest. Frontiers in Plant Science, 2019, 10, 830.	1.7	17
30	Precipitation mediates sap flux sensitivity to evaporative demand in the neotropics. Oecologia, 2019, 191, 519-530.	0.9	14
31	Tropical forest carbon balance: effects of field- and satellite-based mortality regimes on the dynamics and the spatial structure of Central Amazon forest biomass. Environmental Research Letters, 2014, 9, 034010.	2.2	13
32	Strong temporal variation in treefall and branchfall rates in a tropical forest is related to extreme rainfall: results from 5Âyears of monthly drone data for a 50 ha plot. Biogeosciences, 2021, 18, 6517-6531.	1.3	13
33	The pantropical response of soil moisture to El Niño. Hydrology and Earth System Sciences, 2020, 24, 2303-2322.	1.9	11
34	Calibration, measurement, and characterization of soil moisture dynamics in a central Amazonian tropical forest. Vadose Zone Journal, 2020, 19, e20070.	1.3	10
35	The contribution of respiration in tree stems to the Dole Effect. Biogeosciences, 2012, 9, 4037-4044.	1.3	7
36	Recovery of Forest Structure Following Large-Scale Windthrows in the Northwestern Amazon. Forests, 2021, 12, 667.	0.9	7

#	Article	IF	CITATIONS
37	Landsat near-infrared (NIR) band and ELM-FATES sensitivity to forest disturbances and regrowth in the Central Amazon. Biogeosciences, 2020, 17, 6185-6205.	1.3	7
38	Soil moisture thresholds explain a shift from light-limited to water-limited sap velocity in the Central Amazon during the 2015–16 El Niño drought. Environmental Research Letters, 2022, 17, 064023.	2.2	5
39	Assessing Earthquake-Induced Tree Mortality in Temperate Forest Ecosystems: A Case Study from Wenchuan, China. Remote Sensing, 2016, 8, 252.	1.8	4
40	Dry Season Transpiration and Soil Water Dynamics in the Central Amazon. Frontiers in Plant Science, 2022, 13, 825097.	1.7	4
41	Multi-cyclone analysis and machine learning model implications of cyclone effects on forests. International Journal of Applied Earth Observation and Geoinformation, 2021, 103, 102528.	1.4	2
42	The Rainfall Sensitivity of Tropical Net Primary Production in CMIP5 Twentieth- and Twenty-First-Century Simulations*. Journal of Climate, 2015, 28, 9313-9331.	1.2	1