

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4641413/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	BRD9 regulates interferon-stimulated genes during macrophage activation via cooperation with BET protein BRD4. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	15
2	Interorgan crosstalk in pancreatic islet function and pathology. FEBS Letters, 2022, 596, 607-619.	2.8	10
3	Bromodomain containing 9 (BRD9) regulates macrophage inflammatory responses by potentiating glucocorticoid receptor activity. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	12
4	Epigenetic Regulation of \hat{I}^2 Cell Identity and Dysfunction. Frontiers in Endocrinology, 2021, 12, 725131.	3.5	9
5	Immune-evasive human islet-like organoids ameliorate diabetes. Nature, 2020, 586, 606-611.	27.8	192
6	ERRÎ ³ Promotes Angiogenesis, Mitochondrial Biogenesis, and Oxidative Remodeling in PGC1α/β-Deficient Muscle. Cell Reports, 2018, 22, 2521-2529.	6.4	58
7	Vitamin D Switches BAF Complexes to Protect Î ² Cells. Cell, 2018, 173, 1135-1149.e15.	28.9	162
8	ERRÎ ³ Is Required for the Metabolic Maturation of Therapeutically Functional Glucose-Responsive βÂCells. Cell Metabolism, 2016, 23, 622-634.	16.2	139
9	Naive versus Primed: It's Now Three-Dimensional. Cell Stem Cell, 2016, 18, 164-165.	11.1	0
10	ERRs Mediate a Metabolic Switch Required for Somatic Cell Reprogramming to Pluripotency. Cell Stem Cell, 2015, 16, 547-555.	11.1	109
11	Methylome, transcriptome, and PPARÎ ³ cistrome analyses reveal two epigenetic transitions in fat cells. Epigenetics, 2014, 9, 1195-1206.	2.7	9
12	lron regulatory protein-1 protects against mitoferrin-1-deficient porphyria Journal of Biological Chemistry, 2014, 289, 13707.	3.4	0
13	Iron Regulatory Protein-1 Protects against Mitoferrin-1-deficient Porphyria. Journal of Biological Chemistry, 2014, 289, 7835-7843.	3.4	34
14	Comparative analysis of 4C-Seq data generated from enzyme-based and sonication-based methods. BMC Genomics, 2013, 14, 345.	2.8	13
15	Protein Phosphatase 4 and Smek Complex Negatively Regulate Par3 and Promote Neuronal Differentiation of Neural Stem/Progenitor Cells. Cell Reports, 2013, 5, 593-600.	6.4	35
16	Biological Implications and Regulatory Mechanisms of Long-range Chromosomal Interactions. Journal of Biological Chemistry, 2013, 288, 22369-22377.	3.4	20
17	Klf4 Organizes Long-Range Chromosomal Interactions with the Oct4 Locus in Reprogramming and Pluripotency. Cell Stem Cell, 2013, 13, 36-47.	11.1	189
18	Genome organization by Klf4 regulates transcription in pluripotent stem cells. Cell Cycle, 2013, 12, 3351-3352.	2.6	7

ZONG WEI

#	ARTICLE	IF	CITATIONS
19	The interactomes of POU5F1 and SOX2 enhancers in human embryonic stem cells. Scientific Reports, 2013, 3, 1588.	3.3	31
20	Comparison of Reprogramming Efficiency Between Transduction of Reprogramming Factors, Cell–Cell Fusion, and Cytoplast Fusion A. Stem Cells, 2010, 28, 1338-1348.	3.2	29
21	Klf4 Interacts Directly with Oct4 and Sox2 to Promote Reprogramming. Stem Cells, 2009, 27, 2969-2978.	3.2	114
22	AcMNPV ORF38 protein has the activity of ADP-ribose pyrophosphatase and is important for virus replication. Virology, 2007, 361, 204-211.	2.4	15