Evelina Martinenaite

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4641344/publications.pdf

Version: 2024-02-01

840119 940134 15 400 11 16 citations h-index g-index papers 16 16 16 460 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Peptide vaccination activating Galectin-3-specific T cells offers a novel means to target Galectin-3-expressing cells in the tumor microenvironment. Oncolmmunology, 2022, 11, 2026020.	2.1	9
2	Cytotoxic T cells isolated from healthy donors and cancer patients kill TGFβ-expressing cancer cells in a TGFβ-dependent manner. Cellular and Molecular Immunology, 2021, 18, 415-426.	4.8	10
3	Arginase 1–Based Immune Modulatory Vaccines Induce Anticancer Immunity and Synergize with Anti–PD-1 Checkpoint Blockade. Cancer Immunology Research, 2021, 9, 1316-1326.	1.6	32
4	A phase 1/2 trial of an immune-modulatory vaccine against IDO/PD-L1 in combination with nivolumab in metastatic melanoma. Nature Medicine, 2021, 27, 2212-2223.	15.2	88
5	Peptide Vaccination Against PD-L1 With IO103 a Novel Immune Modulatory Vaccine in Multiple Myeloma: A Phase I First-in-Human Trial. Frontiers in Immunology, 2020, 11, 595035.	2.2	17
6	The metabolic enzyme arginase-2 is a potential target for novel immune modulatory vaccines. Oncolmmunology, 2020, 9, 1771142.	2.1	18
7	Arginase-1-based vaccination against the tumor microenvironment: the identification of an optimal T-cell epitope. Cancer Immunology, Immunotherapy, 2019, 68, 1901-1907.	2.0	16
8	High frequencies of circulating memory T cells specific for calreticulin exon 9 mutations in healthy individuals. Blood Cancer Journal, 2019, 9, 8.	2.8	27
9	Peripheral memory T cells specific for Arginase-1. Cellular and Molecular Immunology, 2019, 16, 718-719.	4.8	13
10	The inhibitory checkpoint, PD-L2, is a target for effector T cells: Novel possibilities for immune therapy. Oncolmmunology, 2018, 7, e1390641.	2.1	33
11	Frequent adaptive immune responses against arginase-1. Oncolmmunology, 2018, 7, e1404215.	2.1	27
12	Spontaneous T-cell responses against Arginase-1 in the chronic myeloproliferative neoplasms relative to disease stage and type of driver mutation. Oncolmmunology, 2018, 7, e1468957.	2.1	15
13	PD-L1 peptide co-stimulation increases immunogenicity of a dendritic cell-based cancer vaccine. Oncolmmunology, 2016, 5, e1202391.	2.1	33
14	CCL22-specific T Cells: Modulating the immunosuppressive tumor microenvironment. Oncolmmunology, 2016, 5, e1238541.	2.1	56
15	Spontaneous presence of FOXO3-specific T cells in cancer patients. Oncolmmunology, 2014, 3, e953411.	2.1	4