
Wei-Qiang Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4641157/publications.pdf Version: 2024-02-01

WEL-OLANG LUL

#	Article	IF	CITATIONS
1	Magnetic anisotropy in bulk nanocrystalline SmCo5 permanent magnet prepared by hot deformation. Journal of Applied Physics, 2011, 109, .	2.5	69
2	Tb nanoparticles doped Nd–Fe–B sintered permanent magnet with enhanced coercivity. Applied Physics Letters, 2009, 94, 092501.	3.3	57
3	Coercivity, microstructure, and thermal stability of sintered Nd–Fe–B magnets by grain boundary diffusion with TbH3 nanoparticles. Rare Metals, 2017, 36, 718-722.	7.1	45
4	Magnetic domain switching in Nd–Fe–B sintered magnets with superior magnetic properties. Materials Research Letters, 2018, 6, 255-260.	8.7	43
5	Structure and magnetic properties of magnetically isotropic and anisotropic Nd–Fe–B permanent magnets prepared by spark plasma sintering technology. Journal of Applied Physics, 2010, 107, .	2.5	35
6	Magnetic properties and thermal stability of MnBi/NdFeB hybrid bonded magnets. Journal of Applied Physics, 2011, 109, .	2.5	35
7	Structural and magnetic properties of bulk MnBi permanent magnets. Journal of Applied Physics, 2011, 109, .	2.5	33
8	Improvement of coercivity and corrosion resistance of Nd-Fe-B sintered magnets by doping aluminium nano-particles. Journal of Rare Earths, 2013, 31, 65-68.	4.8	31
9	Structure and magnetic properties of bulk anisotropic SmCo5/α-Fe nanocomposite permanent magnets with different α-Fe content. Journal of Applied Physics, 2011, 109, .	2.5	29
10	RO PUF design in FPGAs with new comparison strategies. , 2015, , .		27
11	Crystallographic alignment evolution and magnetic properties of Nd-Fe-B nanoflakes prepared by surfactant-assisted ball milling. Journal of Applied Physics, 2012, 111, .	2.5	25
12	Coercivity enhancement of recycled Nd–Fe–B sintered magnets by grain boundary diffusion with DyH3 nano-particles. Physica B: Condensed Matter, 2015, 476, 147-149.	2.7	21
13	High-temperature magnetic properties of anisotropic MnBi/NdFeB hybrid bonded magnets. Rare Metals, 2016, 35, 471-474.	7.1	21
14	Preparation and magnetic properties of bulk nanostructured PrCo5 permanent magnets with strong magnetic anisotropy. Journal of Applied Physics, 2011, 109, .	2.5	20
15	Investigation of Magnetic Properties of MnBi/\$alpha\$-Fe Nanocomposite Permanent Magnets by Micro-Magnetic Simulation. IEEE Transactions on Magnetics, 2013, 49, 3391-3393.	2.1	20
16	Origin of the coercivity difference in sintered Nd-Fe-B magnets by grain boundary diffusion process using TbH3 nanoparticles and TbF3 microparticles. Intermetallics, 2019, 110, 106464.	3.9	19
17	Recycling of Nd–Fe–B Sintered Magnets Sludge via the Reduction–Diffusion Route To Produce Sintered Magnets with Strong Energy Density. ACS Sustainable Chemistry and Engineering, 2018, 6, 6547-6553.	6.7	18
18	Recycled Nd-Fe-B sintered magnets prepared from sludges by calcium reduction-diffusion process. Journal of Rare Earths, 2018, 36, 1284-1291.	4.8	18

WEI-QIANG LIU

#	Article	IF	CITATIONS
19	Origin of low coercivity of high La–Ce-containing Nd–Fe–B sintered magnets. Rare Metals, 2021, 40, 180-184.	7.1	17
20	Improved color quality in double-EML WOLEDs by using a tetradentate Pt(<scp>ii</scp>) complex as a green/red emitter. Journal of Materials Chemistry C, 2021, 9, 3384-3390.	5.5	16
21	Structure and magnetic properties of ternary Tb-Fe-B nanoparticles and nanoflakes. Applied Physics Letters, 2011, 99, 162510.	3.3	14
22	Coercivity enhancement mechanism of Tb-diffusion Nd–Fe–B sintered magnets studied by magneto-optical Kerr optical microscope. Rare Metals, 2021, 40, 570-574.	7.1	14
23	Progress in recycling of Nd–Fe–B sintered magnet wastes*. Chinese Physics B, 2019, 28, 077506.	1.4	13
24	Electrochemical corrosion behavior of Nd–Fe–B permanent magnets with modified microstructure. Journal of Applied Physics, 2009, 105, 07A709.	2.5	12
25	Crystal structure and magnetic properties of SmCo6.6Nb0.4 nanoflakes prepared by surfactant-assisted ball milling. Journal of Rare Earths, 2013, 31, 975-978.	4.8	12
26	Magnetic properties and thermal stability of MnBi/SmFeN hybrid bonded magnets. Journal of Applied Physics, 2014, 115, 17A746.	2.5	12
27	Enhanced Magnetic Properties of Spark Plasma Sintered (La/Ce)–Fe–B Magnets. IEEE Transactions on Magnetics, 2017, 53, 1-3.	2.1	12
28	Recycling of scrap sintered Nd–Fe–B magnets as anisotropic bonded magnets via hydrogen decrepitation process. Journal of Material Cycles and Waste Management, 2015, 17, 547-552.	3.0	11
29	Coercivity enhancement mechanism of grain boundary diffused Nd-Fe-B sintered magnets by magnetic domain evolution observation. Journal of Rare Earths, 2021, 39, 682-688.	4.8	11
30	Structure and magnetic properties of bulk nanocrystalline Dy metal prepared by spark plasma sintering. Applied Physics Letters, 2008, 93, 202501.	3.3	10
31	Ultrahigh coercivity in ternary Tb-Fe-B melt-spun ribbons. Journal of Applied Physics, 2011, 109, 07A760.	2.5	10
32	Enhancement of corrosion resistance in sintered Nd–Fe–B permanent magnet doping with different CuZn5 contents. Rare Metals, 2017, 36, 812-815.	7.1	10
33	Microstructure and magnetic properties of SmCo5 sintered magnets. Rare Metals, 2020, 39, 1295-1299.	7.1	10
34	Tuning the distribution of Tb in Nd-Fe-B sintered magnet to overcome the magnetic properties trade-off. Scripta Materialia, 2022, 217, 114789.	5.2	10
35	Microstructure and properties of Nd-Fe-B magnets prepared by spark plasma sintering. Materials Science and Technology, 2004, 20, 666-668.	1.6	9
36	Coercivity enhancement in Nd-Fe-B sintered permanent magnet doped with Pr nanoparticles. Journal of Applied Physics, 2011, 109, 07A749.	2.5	9

Wei-Qiang Liu

#	Article	IF	CITATIONS
37	Numerical simulation of single roller melt spinning for NdFeB alloy based on finite element method. Rare Metals, 2020, 39, 1145-1150.	7.1	9
38	Effects of Shape Anisotropy on Hard–Soft Exchange-Coupled Permanent Magnets. Nanomaterials, 2022, 12, 1261.	4.1	9
39	Corrosion kinetics of spark plasma sintering Nd-Fe-B magnets in different electrolytes. IEEE Transactions on Magnetics, 2005, 41, 3892-3894.	2.1	8
40	Ternary DyFeB Nanoparticles and Nanoflakes With High Coercivity and Magnetic Anisotropy. IEEE Nanotechnology Magazine, 2012, 11, 651-653.	2.0	8
41	Low-cost Sm0.7Y0.3Co5 sintered magnet produced by traditional powder metallurgical techniques. Rare Metals, 2020, 39, 421-428.	7.1	8
42	Magnetic hardening mechanism of SmCo6.6Nb0.4 nanoflakes prepared by surfactant-assisted ball milling method. Journal of Applied Physics, 2014, 115, 17A713.	2.5	7
43	Mechanical properties of spark plasma sintering Nd-Fe-B permanent magnets. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 4149-4152.	1.8	6
44	Oxidation kinetics of Nd–Fe–B permanent magnets with modified microstructure. Journal of Applied Physics, 2008, 103, 07E108.	2.5	5
45	Preparation and Characterization of Phenol Formaldehyde Bonded Nd–Fe–B Magnets With High Strength and Heat Resistance. IEEE Transactions on Magnetics, 2018, 54, 1-4.	2.1	5
46	Magnetic properties and structure of bulk nanocrystalline Sm(CoCuFeZr)7.6 sintered magnet. Journal of Applied Physics, 2009, 105, 07A707.	2.5	4
47	Hot Pressed Pr ₂ (Fe,Co) ₁₄ B/PrCo ₅ Hybrid Magnet Prepared by Spark Plasma Sintering. IEEE Magnetics Letters, 2015, 6, 1-4.	1.1	4
48	Recycle of Waste Nd–Fe–B Sintered Magnets via NdHx Nanoparticles Modification. IEEE Transactions on Magnetics, 2015, 51, 1-3.	2.1	4
49	Powdering and SPS sintering effect on the magnetocaloric properties of MnNiSi-based compounds. AIP Advances, 2019, 9, 035205.	1.3	4
50	The Effect of Doping Cu Powders on Mechanical Properties and Magnetic Properties of Sm(CoFeCuZr) _z Sintered Magnets. IEEE Transactions on Magnetics, 2021, 57, 1-4.	2.1	4
51	Improving RO PUF design using frequency distribution characteristics. IEICE Electronics Express, 2015, 12, 20141043-20141043.	0.8	3
52	Intrinsic evolution of novel (Nd, MM)2Fe14B-system magnetic flakes. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	2.3	3
53	Effect of ingot cooling rate on Cu distribution and magnetic properties of Sm(CobalFe0.28Cu0.07Zr0.03)7.6 magnets. AIP Advances, 2019, 9, 125142.	1.3	3
54	Micromagnetic Simulation of Nitrogenation Effect on the Magnetic Properties of Sm ₂ Fe ₁₇ N ₃ Alloy. IEEE Magnetics Letters, 2022, 13, 1-5.	1.1	3

Wei-Qiang Liu

#	Article	IF	CITATIONS
55	Structural evolution of anisotropic SmCo _{6.8} Hf _{0.2} nanocrystalline magnet prepared by hot deformation. Materials Research Letters, 2022, 10, 648-655.	8.7	3
56	Structural and magnetic properties of bulk nanocrystalline Erbium metal. AIP Advances, 2011, 1, .	1.3	2
57	Crystal structure and magnetic properties of (Nd,Tb)2Fe14B nanoflakes prepared by surfactant-assisted ball milling. AIP Advances, 2017, 7, 056231.	1.3	2
58	Microstructure Characteristics of 2:17 SmCo Commercial Magnets With Different Coercivities. IEEE Transactions on Magnetics, 2019, 55, 1-4.	2.1	2
59	Study on the high temperature magnetization reversal mechanism of grain boundary diffusion Nd–Fe–B sintered magnet by magnetic domain evolution observation. Materials Research Express, 2019, 6, 086101.	1.6	2
60	Structure and Thermal Stability of a Bulk Nanocrystalline \${hbox{Sm}}_{0.8}{hbox{Tm}}_{0.2}{hbox{Co}}_{5.2}\$ Permanent Magnet. IEEE Transactions on Magnetics, 2014, 50, 1-3.	2.1	1
61	Magnetization reversal behavior of SmCo6.6Nb0.4 nanoflakes prepared by surfactant-assisted ball milling. AIP Advances, 2016, 6, .	1.3	1
62	Phase and Texture Evolution of Hot-Deformed Sm(Co,Fe,Cu,Zr)z Magnet. IEEE Transactions on Magnetics, 2021, 57, 1-5.	2.1	1
63	DDM Curing Enhancement for the Epoxy Resin Binder Bonded Nd–Fe–B Magnets. IEEE Transactions on Magnetics, 2021, 57, 1-7.	2.1	1
64	Anisotropic Nanocrystalline SmCo ₅ Permanent Magnet Prepared by Hot Extrusion. IEEE Transactions on Magnetics, 2022, 58, 1-5.	2.1	1
65	Phase Structure and Properties of Fe-Rich 2:17-Type Sm-Co Sintered Magnets. IEEE Transactions on Magnetics, 2022, 58, 1-5.	2.1	1
66	Coercivity enhancement in PrCu-doped PrCo5 hot deformed magnet. AIP Advances, 2018, 8, 056212.	1.3	0
67	Grain refinement leading to the ultra-high coercivity in L1 ₀ -Mn _{1.33} Ga bulk magnet via hot deformation. Applied Physics Letters, 2022, 120, 152403.	3.3	0