

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4640886/publications.pdf Version: 2024-02-01

YONG HE

#	Article	IF	CITATIONS
1	Spatial Adjustment Strategy to Improve the Sensitivity of Ionogels for Flexible Sensors. Macromolecular Chemistry and Physics, 2022, 223, .	1.1	3
2	Epithelial Gasdermin D shapes the host-microbial interface by driving mucus layer formation. Science Immunology, 2022, 7, eabk2092.	5.6	48
3	Balancing the customization and standardization: exploration and layout surrounding the regulation of the growing field of 3D-printed medical devices in China. Bio-Design and Manufacturing, 2022, 5, 580-606.	3.9	12
4	Liquid Metal Microgels for Three-Dimensional Printing of Smart Electronic Clothes. ACS Applied Materials & Interfaces, 2022, 14, 13458-13467.	4.0	31
5	Triply periodic minimal surface (TPMS) porous structures: from multi-scale design, precise additive manufacturing to multidisciplinary applications. International Journal of Extreme Manufacturing, 2022, 4, 022001.	6.3	139
6	Projection-based 3D bioprinting for hydrogel scaffold manufacturing. Bio-Design and Manufacturing, 2022, 5, 633-639.	3.9	17
7	Photocurable Hydrogel Substrate—Better Potential Substitute on Bone-Marrow-Derived Dendritic Cells Culturing. Materials, 2022, 15, 3322.	1.3	4
8	A microfluidic cell chip for virus isolation via rapid screening for permissive cells. Virologica Sinica, 2022, , .	1.2	6
9	In situ 3D bioprinting with bioconcrete bioink. Nature Communications, 2022, 13, .	5.8	52
10	Modeling the printability of photocuring and strength adjustable hydrogel bioink during projection-based 3D bioprinting. Biofabrication, 2021, 13, 035032.	3.7	51
11	Facile 3D cell culture protocol based on photocurable hydrogels. Bio-Design and Manufacturing, 2021, 4, 149-153.	3.9	19
12	Recyclable conductive nanoclay for direct <i>in situ</i> printing flexible electronics. Materials Horizons, 2021, 8, 2006-2017.	6.4	37
13	Biodegradable intramedullary nail (BIN) with high-strength bioceramics for bone fracture. Journal of Materials Chemistry B, 2021, 9, 969-982.	2.9	7
14	Self-sintering liquid metal ink with LAPONITE® for flexible electronics. Journal of Materials Chemistry C, 2021, 9, 3070-3080.	2.7	21
15	Peripheral Nerve Regeneration with 3D Printed Bionic Scaffolds Loading Neural Crest Stem Cell Derived Schwann Cell Progenitors. Advanced Functional Materials, 2021, 31, 2010215.	7.8	25
16	3D Cell Culture—Can It Be As Popular as 2D Cell Culture?. Advanced NanoBiomed Research, 2021, 1, 2000066.	1.7	20
17	Recent Progress in 3D Printing of Smart Structures: Classification, Challenges, and Trends. Advanced Intelligent Systems, 2021, 3, 2000271.	3.3	16
18	Research on Enhanced Detection of Benzoic Acid Additives in Liquid Food Based on Terahertz Metamaterial Devices. Sensors, 2021, 21, 3238.	2.1	12

#	Article	IF	CITATIONS
19	The Superhydrophobic Fluorineâ€Containing Material Prepared Through Biomimetic UV Lithography for Oil–Water Separation and Antiâ€Bioadhesion. Macromolecular Chemistry and Physics, 2021, 222, 2100149.	1.1	10
20	3D Printing of Physical Organ Models: Recent Developments and Challenges. Advanced Science, 2021, 8, e2101394.	5.6	61
21	Biomanufacturing: from biomedicine to biomedicine. Bio-Design and Manufacturing, 2021, 4, 912-913.	3.9	7
22	Significantly improve the photoinitiation ability of hydroxyalkyl-derived polymerizable α-hydroxyalkylacetophenone photoinitiators by blocking hyperconjugation. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 419, 113451.	2.0	8
23	Growth differentiation factor-5–gelatin methacryloyl injectable microspheres laden with adipose-derived stem cells for repair of disc degeneration. Biofabrication, 2021, 13, 015010.	3.7	48
24	Recent Progress in 3D Printing of Smart Structures: Classification, Challenges, and Trends. Advanced Intelligent Systems, 2021, 3, .	3.3	2
25	Allâ€Printed Flexible and Stretchable Electronics with Pressing or Freezing Activatable Liquidâ€Metal–Silicone Inks. Advanced Functional Materials, 2020, 30, 1906683.	7.8	138
26	Construction of multi-scale vascular chips and modelling of the interaction between tumours and blood vessels. Materials Horizons, 2020, 7, 82-92.	6.4	55
27	Micro/nanofabrication of brittle hydrogels using 3D printed soft ultrafine fiber molds for damage-free demolding. Biofabrication, 2020, 12, 025015.	3.7	31
28	3D biofabrication of microfiber-laden minispheroids: a facile 3D cell co-culturing system. Biomaterials Science, 2020, 8, 109-117.	2.6	21
29	Synchronous 3D Bioprinting of Largeâ€Scale Cellâ€Laden Constructs with Nutrient Networks. Advanced Healthcare Materials, 2020, 9, e1901142.	3.9	57
30	Development of 3D bioprinting: From printing methods to biomedical applications. Asian Journal of Pharmaceutical Sciences, 2020, 15, 529-557.	4.3	264
31	Solid-state photopolymerization of long-chain vinyl carboxylates through binary molecular arrangement adjustment. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 401, 112770.	2.0	1
32	Coaxial 3D bioprinting of organ prototyps from nutrients delivery to vascularization. Journal of Zhejiang University: Science A, 2020, 21, 859-875.	1.3	18
33	3D printing of high-strength chitosan hydrogel scaffolds without any organic solvents. Biomaterials Science, 2020, 8, 5020-5028.	2.6	82
34	Photo-patternable F-containing acrylic copolymers as passivation materials. Materials Chemistry and Physics, 2020, 253, 123404.	2.0	4
35	Hydrogels: The Next Generation Body Materials for Microfluidic Chips?. Small, 2020, 16, e2003797.	5.2	56
36	Design and properties of novel photothermal initiators for photoinduced thermal frontal polymerization. Polymer Chemistry, 2020, 11, 3980-3986.	1.9	8

#	Article	IF	CITATIONS
37	The Effect of Oxetane as Active Diluent on Cationic UV Curing System of Fluorine-Containing Epoxy Prepolymer. Advances in Polymer Technology, 2020, 2020, 1-8.	0.8	3
38	Why choose 3D bioprinting? Part II: methods and bioprinters. Bio-Design and Manufacturing, 2020, 3, 1-4.	3.9	39
39	Directly coaxial 3D bioprinting of large-scale vascularized tissue constructs. Biofabrication, 2020, 12, 035014.	3.7	117
40	Why choose 3D bioprinting? Part III: printing in vitro 3D models for drug screening. Bio-Design and Manufacturing, 2020, 3, 160-163.	3.9	12
41	Grafting of 3D Bioprinting to In Vitro Drug Screening: A Review. Advanced Healthcare Materials, 2020, 9, e1901773.	3.9	63
42	4D Printing of High-Performance Thermal-Responsive Liquid Metal Elastomers Driven by Embedded Microliquid Chambers. ACS Applied Materials & Interfaces, 2020, 12, 12068-12074.	4.0	44
43	Sacrificial microgel-laden bioink-enabled 3D bioprinting of mesoscale pore networks. Bio-Design and Manufacturing, 2020, 3, 30-39.	3.9	65
44	Cell-modified bioprinted microspheres for vascular regeneration. Materials Science and Engineering C, 2020, 112, 110896.	3.8	6
45	On the Investigation of Surface Integrity of Ti6Al4V ELI Using Si-Mixed Electric Discharge Machining. Materials, 2020, 13, 1549.	1.3	55
46	3D printing of gelatin methacrylate-based nerve guidance conduits with multiple channels. Materials and Design, 2020, 192, 108757.	3.3	98
47	A Review of 3D Printing Technologies for Soft Polymer Materials. Advanced Functional Materials, 2020, 30, 2000187.	7.8	379
48	A bioartificial liver support system integrated with a DLM/GelMA-based bioengineered whole liver for prevention of hepatic encephalopathy <i>via</i> enhanced ammonia reduction. Biomaterials Science, 2020, 8, 2814-2824.	2.6	21
49	Bioprinting of novel 3D tumor array chip for drug screening. Bio-Design and Manufacturing, 2020, 3, 175-188.	3.9	38
50	Variable bead width of material extrusion-based additive manufacturing. Journal of Zhejiang University: Science A, 2019, 20, 73-82.	1.3	11
51	Structure-induced cell growth by 3D printing of heterogeneous scaffolds with ultrafine fibers. Materials and Design, 2019, 181, 108092.	3.3	95
52	Why choose 3D bioprinting? Part I: a brief introduction of 3D bioprinting for the beginners. Bio-Design and Manufacturing, 2019, 2, 221-224.	3.9	15
53	The unusual improvement of normal alkyl alcohol on solid-state cationic photopolymerization of octadecyl vinyl ether. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 374, 52-57.	2.0	1
54	Photopolymerization of Coumarin-Containing Reversible Photoresponsive Materials Based on Wavelength Selectivity. Industrial & Engineering Chemistry Research, 2019, 58, 2970-2975.	1.8	51

#	Article	IF	CITATIONS
55	Preparation of polymerizable thermal initiator and its application in photo-induced thermal frontal polymerization. European Polymer Journal, 2019, 118, 107-112.	2.6	6
56	Multimaterial 3D Printing of Highly Stretchable Silicone Elastomers. ACS Applied Materials & Interfaces, 2019, 11, 23573-23583.	4.0	151
57	Sulfonic Containing Polymer Bead Synthesized through Inverse Suspension Polymerization and Its Characteristics for Esterification Catalyst. Advances in Polymer Technology, 2019, 2019, 1-8.	0.8	1
58	3D printing of complex GelMA-based scaffolds with nanoclay. Biofabrication, 2019, 11, 035006.	3.7	159
59	Bioprinting of Cell‣aden Microfiber: Can It Become a Standard Product?. Advanced Healthcare Materials, 2019, 8, e1900014.	3.9	45
60	Engineering three-dimensional microenvironments towards <i>in vitro</i> disease models of the central nervous system. Biofabrication, 2019, 11, 032003.	3.7	37
61	Rapid assembling organ prototypes with controllable cell-laden multi-scale sheets. Bio-Design and Manufacturing, 2019, 2, 1-9.	3.9	21
62	Extracellular recordings of bionic engineered cardiac tissue based on a porous scaffold and microelectrode arrays. Analytical Methods, 2019, 11, 5872-5879.	1.3	16
63	Protocols of 3D Bioprinting of Gelatin Methacryloyl Hydrogel Based Bioinks. Journal of Visualized Experiments, 2019, , .	0.2	16
64	Electroâ€Assisted Bioprinting of Low oncentration GelMA Microdroplets. Small, 2019, 15, e1804216.	5.2	92
65	UV-cured organic–inorganic hybrid moisture barrier materials based on polybutadiene dimethacrylate. Journal of Coatings Technology Research, 2019, 16, 429-437.	1.2	4
66	Reversible CO ₂ -Responsive and Photopolymerizable Prepolymers for Stepwise Regulation on Demand. Industrial & Engineering Chemistry Research, 2018, 57, 1834-1839.	1.8	3
67	3D printed Lego [®] -like modular microfluidic devices based on capillary driving. Biofabrication, 2018, 10, 035001.	3.7	61
68	Inclined layer printing for fused deposition modeling without assisted supporting structure. Robotics and Computer-Integrated Manufacturing, 2018, 51, 1-13.	6.1	46
69	Fiberâ€Based Mini Tissue with Morphologyâ€Controllable GelMA Microfibers. Small, 2018, 14, e1802187.	5.2	125
70	Vesselâ€onâ€aâ€chip with Hydrogelâ€based Microfluidics. Small, 2018, 14, e1802368.	5.2	119
71	Controllable Synthesis and Characterization of Soybean-Oil-Based Hyperbranched Polymers via One-Pot Method. ACS Sustainable Chemistry and Engineering, 2018, 6, 12865-12871.	3.2	16
72	Three-Dimensional Coprinting of Liquid Metals for Directly Fabricating Stretchable Electronics. 3D Printing and Additive Manufacturing, 2018, 5, 195-203.	1.4	25

#	Article	IF	CITATIONS
73	3D printing and coating to fabricate a hollow bullet-shaped implant with porous surface for controlled cytoxan release. International Journal of Pharmaceutics, 2018, 552, 91-98.	2.6	26
74	Single-Ring Magnetic Levitation Configuration for Object Manipulation and Density-Based Measurement. Analytical Chemistry, 2018, 90, 9226-9233.	3.2	60
75	0 + 0 = 2: Changeover of Stability and Photopolymerization Kinetics for the Rotator Phase of Long-Chain Acrylate through the Ultra-Addition Effect in Binary Systems. Macromolecules, 2018, 51, 5904-5910.	2.2	7
76	Fabrication of electrospun nanofibrous scaffolds with 3D controllable geometric shapes. Materials and Design, 2018, 157, 159-169.	3.3	68
77	Can Chain-Reaction Polymerization of Octadecyl Acrylate Occur in Crystal?. Macromolecules, 2018, 51, 3731-3737.	2.2	18
78	Research on the electrospun foaming process to fabricate threeâ€dimensional tissue engineering scaffolds. Journal of Applied Polymer Science, 2018, 135, 46898.	1.3	21
79	Airflowâ€Assisted 3D Bioprinting of Human Heterogeneous Microspheroidal Organoids with Microfluidic Nozzle. Small, 2018, 14, e1802630.	5.2	71
80	Three-Dimensional Printed Wearable Sensors with Liquid Metals for Detecting the Pose of Snakelike Soft Robots. ACS Applied Materials & Interfaces, 2018, 10, 23208-23217.	4.0	108
81	3D Bioprinting of Vessel-like Structures with Multilevel Fluidic Channels. ACS Biomaterials Science and Engineering, 2017, 3, 399-408.	2.6	181
82	An optimization approach for path planning of high-quality and uniform additive manufacturing. International Journal of Advanced Manufacturing Technology, 2017, 92, 651-662.	1.5	39
83	From Microfluidic Paper-Based Analytical Devices to Paper-Based Biofluidics with Integrated Continuous Perfusion. ACS Biomaterials Science and Engineering, 2017, 3, 601-607.	2.6	16
84	Fabrication of cerebral aneurysm simulator with a desktop 3D printer. Scientific Reports, 2017, 7, 44301.	1.6	47
85	Optimization of process planning for reducing material consumption in additive manufacturing. Journal of Manufacturing Systems, 2017, 44, 65-78.	7.6	52
86	Investigation on the photopolymerization possibility of 1,6-hexanediol diacrylate in crystalline-state. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 346, 273-280.	2.0	7
87	Shrinkage in UV-Curable Coatings. , 2017, , 195-223.		8
88	A non-retraction path planning approach for extrusion-based additive manufacturing. Robotics and Computer-Integrated Manufacturing, 2017, 48, 132-144.	6.1	69
89	Modeling and process planning for curved layer fused deposition. International Journal of Advanced Manufacturing Technology, 2017, 91, 273-285.	1.5	61
90	A novel path planning methodology for extrusion-based additive manufacturing of thin-walled parts. International Journal of Computer Integrated Manufacturing, 2017, 30, 1301-1315.	2.9	36

#	Article	IF	CITATIONS
91	Bone regeneration in 3D printing bioactive ceramic scaffolds with improved tissue/material interface pore architecture in thin-wall bone defect. Biofabrication, 2017, 9, 025003.	3.7	141
92	3D robocasting magnesium-doped wollastonite/TCP bioceramic scaffolds with improved bone regeneration capacity in critical sized calvarial defects. Journal of Materials Chemistry B, 2017, 5, 2941-2951.	2.9	58
93	Printing@Clinic: From Medical Models to Organ Implants. ACS Biomaterials Science and Engineering, 2017, 3, 3083-3097.	2.6	21
94	Rapid Customization of 3D Integrated Microfluidic Chips via Modular Structure-Based Design. ACS Biomaterials Science and Engineering, 2017, 3, 2606-2616.	2.6	29
95	Complex new materials from simple chemistry: Combining an aminoâ€substituted polysiloxane and carboxylic acids. Journal of Polymer Science Part A, 2017, 55, 3851-3861.	2.5	8
96	α-hydroxyalkyl ketones derivatives used as photoinitiators for photografting field. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 349, 193-196.	2.0	8
97	3D Printed Paper-Based Microfluidic Analytical Devices. Micromachines, 2016, 7, 108.	1.4	53
98	The outstanding mechanical response and bone regeneration capacity of robocast dilute magnesium-doped wollastonite scaffolds in critical size bone defects. Journal of Materials Chemistry B, 2016, 4, 3945-3958.	2.9	47
99	3D Printing Surgical Implants at the clinic: A Experimental Study on Anterior Cruciate Ligament Reconstruction. Scientific Reports, 2016, 6, 21704.	1.6	91
100	Systematical Evaluation of Mechanically Strong 3D Printed Diluted magnesium Doping Wollastonite Scaffolds on Osteogenic Capacity in Rabbit Calvarial Defects. Scientific Reports, 2016, 6, 34029.	1.6	56
101	Research on the printability of hydrogels in 3D bioprinting. Scientific Reports, 2016, 6, 29977.	1.6	428
102	Preparation and characterization of yellowing resistance and low volume shrinkage of fluorinated polysiloxane urethane acrylate. Progress in Organic Coatings, 2016, 97, 74-81.	1.9	29
103	Process Planning for the Fuse Deposition Modeling of Ankle-Foot-Othoses. Procedia CIRP, 2016, 42, 760-765.	1.0	37
104	Cationic UV-curable fluorine-containing polyacrylic epoxy prepolymer with good compatibility. Progress in Organic Coatings, 2016, 100, 70-75.	1.9	15
105	From rosin to high adhesive polyurethane acrylate: Synthesis and properties. International Journal of Adhesion and Adhesives, 2016, 66, 99-103.	1.4	28
106	3D printing magnesium-doped wollastonite/ \hat{l}^2 -TCP bioceramics scaffolds with high strength and adjustable degradation. Journal of the European Ceramic Society, 2016, 36, 1495-1503.	2.8	90
107	Simultaneous mechanical property and biodegradation improvement of wollastonite bioceramic through magnesium dilute doping. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 54, 60-71.	1.5	74
108	A facile and low-cost micro fabrication material: flash foam. Scientific Reports, 2015, 5, 13522.	1.6	13

#	Article	IF	CITATIONS
109	3Dâ€Printed Atsttrinâ€Incorporated Alginate/Hydroxyapatite Scaffold Promotes Bone Defect Regeneration with TNF/TNFR Signaling Involvement. Advanced Healthcare Materials, 2015, 4, 1701-1708.	3.9	60
110	Support generation for additive manufacturing based on sliced data. International Journal of Advanced Manufacturing Technology, 2015, 80, 2041-2052.	1.5	30
111	Coaxial nozzle-assisted 3D bioprinting with built-in microchannels for nutrients delivery. Biomaterials, 2015, 61, 203-215.	5.7	486
112	45S5 Bioglass analogue reinforced akermanite ceramic favorable for additive manufacturing mechanically strong scaffolds. RSC Advances, 2015, 5, 102727-102735.	1.7	21
113	A fluorinated compound used as migrated photoinitiator in the presence of air. Polymer, 2015, 71, 93-101.	1.8	10
114	High compatible free radical UV-curable fluorine-containing polyacrylic acrylate prepolymer. Journal of Fluorine Chemistry, 2015, 173, 47-54.	0.9	15
115	A parallel-based path generation method for fused deposition modeling. International Journal of Advanced Manufacturing Technology, 2015, 77, 927-937.	1.5	58
116	Printing 3D microfluidic chips with a 3D sugar printer. Microfluidics and Nanofluidics, 2015, 19, 447-456.	1.0	78
117	Micro structure fabrication with a simplified hot embossing method. RSC Advances, 2015, 5, 39138-39144.	1.7	24
118	Fabrication of paper-based microfluidic analysis devices: a review. RSC Advances, 2015, 5, 78109-78127.	1.7	177
119	Rapid fabrication of paper-based microfluidic analytical devices with desktop stereolithography 3D printer. RSC Advances, 2015, 5, 2694-2701.	1.7	65
120	Synthesis and properties of polyurethane acrylate modified by different contents of stearyl alcohol. Journal of Coatings Technology Research, 2015, 12, 197-204.	1.2	5
121	A low-cost and rapid microfluidic paper-based analytical device fabrication method: flash foam stamp lithography. RSC Advances, 2014, 4, 63860-63865.	1.7	35
122	Droplet deviation modeling and compensation scheme of inkjet printing. International Journal of Advanced Manufacturing Technology, 2014, 75, 1405-1415.	1.5	13
123	A nondestructive online method for monitoring the injection molding process by collecting and analyzing machine running data. International Journal of Advanced Manufacturing Technology, 2014, 72, 765-777.	1.5	51
124	Effect of borosilicate glass on the mechanical and biodegradation properties of 45S5-derived bioactive glass-ceramics. Journal of Non-Crystalline Solids, 2014, 405, 91-99.	1.5	22
125	A fluorescent perylene-assembled polyvinylpyrrolidone film: synthesis, morphology and nanostructure. Soft Matter, 2014, 10, 3426.	1.2	19
126	Nucleophilic Substitution of Tetrachloroperylene Diimide in Fluorescent Polyvinylpyrrolidone Film. Macromolecular Chemistry and Physics, 2014, 215, 493-498.	1.1	5

#	Article	IF	CITATIONS
127	A fine-interpolation-based parametric interpolation method with a novel real-time look-ahead algorithm. CAD Computer Aided Design, 2014, 55, 37-48.	1.4	27
128	Fabrication of low cost soft tissue prostheses with the desktop 3D printer. Scientific Reports, 2014, 4, 6973.	1.6	179
129	An interpolation method for the open CNC system based on EPM. International Journal of Advanced Manufacturing Technology, 2013, 69, 405-416.	1.5	5
130	Volume shrinkage of UV-curable coating formulation investigated by real-time laser reflection method. Journal of Coatings Technology Research, 2013, 10, 231-237.	1.2	29
131	A robust 2D point-sequence curve offset algorithm with multiple islands for contour-parallel tool path. CAD Computer Aided Design, 2013, 45, 657-670.	1.4	46
132	Preparation and properties of polyurethane acrylates modified by saturated alcohols. Progress in Organic Coatings, 2013, 76, 1594-1599.	1.9	29
133	Solid photopolymerization and polymer properties of octadecyl vinyl ether. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 271, 105-110.	2.0	8
134	Rapid photopolymerization of octadecyl methacrylate in the solid state. New Journal of Chemistry, 2013, 37, 444-450.	1.4	12
135	A look-ahead and adaptive speed control algorithm for parametric interpolation. International Journal of Advanced Manufacturing Technology, 2013, 69, 2613-2620.	1.5	17
136	Thiol–epoxy/thiol–acrylate hybrid materials synthesized by photopolymerization. Journal of Materials Chemistry C, 2013, 1, 4481.	2.7	78
137	Rapid solid-state photopolymerization of octadecyl acrylate: low shrinkage and insensitivity to oxygen. Polymer International, 2013, 62, 1692-1697.	1.6	21
138	Effect of Monomer Structure on Realâ€Time UVâ€Curing Shrinkage Studied by a Laser Scanning Approach. Advances in Polymer Technology, 2013, 32, .	0.8	15
139	Exploration for decreasing the volume shrinkage for photopolymerization. Progress in Organic Coatings, 2012, 75, 398-403.	1.9	20
140	Polymerization shrinkage of (meth)acrylate determined by reflective laser beam scanning. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 923-928.	2.4	38
141	On-line Asynchronous Compensation Methods for static/quasi-static error implemented on CNC machine tools. International Journal of Machine Tools and Manufacture, 2012, 60, 14-26.	6.2	75
142	Synthesis and properties of novel polyurethane acrylate containing 3-(2-hydroxyethyl) isocyanurate segment. Progress in Organic Coatings, 2010, 67, 264-268.	1.9	20
143	Synthesis and characterization of an amphiphilic hyperbranched poly(amineâ€ester)â€ <i>co</i> â€ <scp>D,L</scp> â€lactide (HPAEâ€ <i>co</i> â€PLA) copolymers and their nanoparticles for protein drug delivery. Journal of Applied Polymer Science, 2010, 117, 1156-1167.	1.3	5
144	Preparation and properties of different photoresponsive hydrogels modulated with UV and visible light irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 211, 20-25.	2.0	23

#	Article	IF	CITATIONS
145	Investigation of stabilizerâ€free dispersion polymerization process of styrene and maleic anhydride copolymer microspheres. Journal of Polymer Science Part A, 2010, 48, 5652-5658.	2.5	10
146	PHOTOPOLYMERIZATION OF POLY(ETHYLENE GLYCOL) DIACRYLATE IN SUPERCRITICAL CARBON DIOXIDE. Acta Polymerica Sinica, 2010, 010, 721-726.	0.0	4
147	Analysis of pattern height development in hot embossing process. Microsystem Technologies, 2009, 15, 963-968.	1.2	1
148	Micelles formed by selfâ€assembly of hyperbranched poly[(amineâ€ester)â€ <i>co</i> â€{D,L″actide)] (HPAEâ€ <i>co</i> â€PLA) copolymers for protein drug delivery. Polymer International, 2009, 58, 31-39.	1.6	30
149	Photopolymerization of alicyclic methacrylate hydrogels for controlled release. Polymers for Advanced Technologies, 2009, 20, 607-612.	1.6	8
150	Optimization of control parameters in micro hot embossing. Microsystem Technologies, 2008, 14, 325-329.	1.2	29
151	Synthesis and photopolymerization of 4â€(1â€propenyl)oxybutyl acrylate. Journal of Applied Polymer Science, 2008, 110, 3388-3394.	1.3	5
152	Novel Bisphenol A Epoxide–Acrylate Hybrid Oligomer and Its Photopolymerization. Designed Monomers and Polymers, 2008, 11, 383-394.	0.7	16
153	Research on optimization of the hot embossing process. Journal of Micromechanics and Microengineering, 2007, 17, 2420-2425.	1.5	71
154	Photopolymerization of hybrid monomer 3-(1-propenyl)oxypropyl acrylate. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 191, 25-31.	2.0	36
155	Photopolymerization kinetics of cycloaliphatic epoxide–acrylate hybrid monomer. Polymer	1.6	18