Hanne Roberg-Larsen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4640740/publications.pdf

Version: 2024-02-01

23 717 13 papers citations h-index

25 25 25 1407 all docs docs citations times ranked citing authors

22

g-index

#	Article	IF	CITATIONS
1	On-line solid phase extraction–liquid chromatography, with emphasis on modern bioanalysis and miniaturized systems. Journal of Pharmaceutical and Biomedical Analysis, 2014, 87, 120-129.	2.8	118
2	Cholesterol biosynthesis pathway as a novel mechanism of resistance to estrogen deprivation in estrogen receptor-positive breast cancer. Breast Cancer Research, 2016, 18, 58.	5.0	98
3	Proteomics tools reveal startlingly high amounts of oxytocin in plasma and serum. Scientific Reports, 2016, 6, 31693.	3.3	90
4	Mass spectrometric detection of 27-hydroxycholesterol in breast cancer exosomes. Journal of Steroid Biochemistry and Molecular Biology, 2017, 169, 22-28.	2.5	64
5	Impaired LXRα Phosphorylation Attenuates Progression of Fatty Liver Disease. Cell Reports, 2019, 26, 984-995.e6.	6.4	46
6	Highly automated nano-LC/MS-based approach for thousand cell-scale quantification of side chain-hydroxylated oxysterols. Journal of Lipid Research, 2014, 55, 1531-1536.	4.2	42
7	High sensitivity measurements of active oxysterols with automated filtration/filter backflush-solid phase extraction-liquid chromatography–mass spectrometry. Journal of Chromatography A, 2012, 1255, 291-297.	3.7	38
8	A critical evaluation of Amicon Ultra centrifugal filters for separating proteins, drugs and nanoparticles in biosamples. Journal of Pharmaceutical and Biomedical Analysis, 2016, 120, 106-111.	2.8	29
9	Ultracentrifugation versus kit exosome isolation: nanoLC–MS and other tools reveal similar performance biomarkers, but also contaminations. Future Science OA, 2019, 5, FSO359.	1.9	25
10	Metabolites in vertebrate Hedgehog signaling. Biochemical and Biophysical Research Communications, 2014, 446, 669-674.	2.1	24
11	Fast liquid chromatography-mass spectrometry reveals side chain oxysterol heterogeneity in breast cancer tumour samples. Journal of Steroid Biochemistry and Molecular Biology, 2019, 192, 105309.	2.5	23
12	Liver x receptor alpha drives chemoresistance in response to side-chain hydroxycholesterols in triple negative breast cancer. Oncogene, 2021, 40, 2872-2883.	5.9	23
13	Liquid chromatography, a key tool for the advancement of single-cell omics analysis. Analytica Chimica Acta, 2021, 1178, 338551.	5.4	20
14	ER-Negative Breast Cancer Is Highly Responsive to Cholesterol Metabolite Signalling. Nutrients, 2019, 11, 2618.	4.1	14
15	Recent advances in on-line upfront devices for sensitive bioanalytical nano LC methods. TrAC - Trends in Analytical Chemistry, 2021, 136, 116190.	11.4	14
16	Underivatized oxysterols and nanoLC–ESI-MS: A mismatch. Steroids, 2015, 99, 125-130.	1.8	11
17	Chromatography of oxysterols. Biochimie, 2018, 153, 3-12.	2.6	11
18	Non-aqueous capillary electrophoretic separation of cholesterol and 25-hydroxycholesterol after derivatization with Girard P reagent. Chemistry and Physics of Lipids, 2017, 207, 87-91.	3.2	6

#	Article	IF	CITATIONS
19	Synthesis, in vitro and in vivo biological evaluation of new oxysterols as modulators of the liver X receptors. Journal of Steroid Biochemistry and Molecular Biology, 2017, 165, 323-330.	2.5	5
20	Pharmacologic and genetic inhibition of cholesterol esterification enzymes reduces tumour burden: A systematic review and meta-analysis of preclinical models. Biochemical Pharmacology, 2022, 196, 114731.	4.4	5
21	Rugged Large Volume Injection for Sensitive Capillary LC-MS Environmental Monitoring. Frontiers in Chemistry, 2017, 5, 62.	3.6	2
22	Mass spectrometry-based measurements of cyclic adenosine monophosphate in cells, simplified using reversed phase liquid chromatography with a polar characterized stationary phase. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2020, 1160, 122384.	2.3	2
23	Hyphenations of one-dimensional capillary liquid chromatography with mass spectrometry. , 2020, , 319-367.		1