Stanley R Riddell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4640421/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reconstitution of Cellular Immunity against Cytomegalovirus in Recipients of Allogeneic Bone Marrow by Transfer of T-Cell Clones from the Donor. New England Journal of Medicine, 1995, 333, 1038-1044.	13.9	1,756
2	CD19 CAR–T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. Journal of Clinical Investigation, 2016, 126, 2123-2138.	3.9	1,657
3	Endothelial Activation and Blood–Brain Barrier Disruption in Neurotoxicity after Adoptive Immunotherapy with CD19 CAR-T Cells. Cancer Discovery, 2017, 7, 1404-1419.	7.7	945
4	Costimulation of CD8αβ T cells by NKG2D via engagement by MIC induced on virus-infected cells. Nature Immunology, 2001, 2, 255-260.	7.0	891
5	Intent-to-treat leukemia remission by CD19 CAR T cells of defined formulation and dose in children and young adults. Blood, 2017, 129, 3322-3331.	0.6	861
6	Immunotherapy of non-Hodgkin's lymphoma with a defined ratio of CD8 ⁺ and CD4 ⁺ CD19-specific chimeric antigen receptor–modified T cells. Science Translational Medicine, 2016, 8, 355ra116.	5.8	832
7	Kinetics and biomarkers of severe cytokine release syndrome after CD19 chimeric antigen receptor–modified T-cell therapy. Blood, 2017, 130, 2295-2306.	0.6	774
8	Adoptive transfer of effector CD8+ T cells derived from central memory cells establishes persistent T cell memory in primates. Journal of Clinical Investigation, 2008, 118, 294-305.	3.9	735
9	Acquisition of a CD19-negative myeloid phenotype allows immune escape of MLL-rearranged B-ALL from CD19 CAR-T-cell therapy. Blood, 2016, 127, 2406-2410.	0.6	622
10	Therapeutic T cell engineering. Nature, 2017, 545, 423-431.	13.7	622
11	Durable Molecular Remissions in Chronic Lymphocytic Leukemia Treated With CD19-Specific Chimeric Antigen Receptor–Modified T Cells After Failure of Ibrutinib. Journal of Clinical Oncology, 2017, 35, 3010-3020.	0.8	568
12	A transgene-encoded cell surface polypeptide for selection, in vivo tracking, and ablation of engineered cells. Blood, 2011, 118, 1255-1263.	0.6	496
13	A Critical Role for Tapasin in the Assembly and Function of Multimeric MHC Class I-TAP Complexes. Science, 1997, 277, 1306-1309.	6.0	477
14	CD20-specific adoptive immunotherapy for lymphoma using a chimeric antigen receptor with both CD28 and 4-1BB domains: pilot clinical trial results. Blood, 2012, 119, 3940-3950.	0.6	466
15	Receptor Affinity and Extracellular Domain Modifications Affect Tumor Recognition by ROR1-Specific Chimeric Antigen Receptor T Cells. Clinical Cancer Research, 2013, 19, 3153-3164.	3.2	441
16	Melanocyte Destruction after Antigen-Specific Immunotherapy of Melanoma. Journal of Experimental Medicine, 2000, 192, 1637-1644.	4.2	414
17	The Nonsignaling Extracellular Spacer Domain of Chimeric Antigen Receptors Is Decisive for <i>In Vivo</i> Antitumor Activity. Cancer Immunology Research, 2015, 3, 125-135.	1.6	406
18	Infectious complications of CD19-targeted chimeric antigen receptor–modified T-cell immunotherapy. Blood, 2018, 131, 121-130.	0.6	374

#	Article	IF	CITATIONS
19	Engineering CAR-T cells: Design concepts. Trends in Immunology, 2015, 36, 494-502.	2.9	354
20	Phosphoproteomic analysis of chimeric antigen receptor signaling reveals kinetic and quantitative differences that affect cell function. Science Signaling, 2018, 11, .	1.6	323
21	The use of anti-CD3 and anti-CD28 monoclonal antibodies to clone and expand human antigen-specific T cells. Journal of Immunological Methods, 1990, 128, 189-201.	0.6	322
22	Adoptive cellular therapy: A race to the finish line. Science Translational Medicine, 2015, 7, 280ps7.	5.8	320
23	Serial Transfer of Single-Cell-Derived Immunocompetence Reveals Stemness of CD8+ Central Memory T Cells. Immunity, 2014, 41, 116-126.	6.6	290
24	Factors associated with durable EFS in adult B-cell ALL patients achieving MRD-negative CR after CD19 CAR T-cell therapy. Blood, 2019, 133, 1652-1663.	0.6	277
25	Phase 1 studies of central memory–derived CD19 CAR T–cell therapy following autologous HSCT in patients with B-cell NHL. Blood, 2016, 127, 2980-2990.	0.6	264
26	Principles for Adoptive T Cell Therapy of Human Viral Diseases. Annual Review of Immunology, 1995, 13, 545-586.	9.5	235
27	Outcomes of acute leukemia patients transplanted with naive T cell–depleted stem cell grafts. Journal of Clinical Investigation, 2015, 125, 2677-2689.	3.9	232
28	Therapy of relapsed leukemia after allogeneic hematopoietic cell transplantation with T cells specific for minor histocompatibility antigens. Blood, 2010, 115, 3869-3878.	0.6	230
29	The response to lymphodepletion impacts PFS in patients with aggressive non-Hodgkin lymphoma treated with CD19 CAR T cells. Blood, 2019, 133, 1876-1887.	0.6	230
30	Targeted antibody-mediated depletion of murine CD19 CAR T cells permanently reverses B cell aplasia. Journal of Clinical Investigation, 2016, 126, 4262-4272.	3.9	229
31	Feasibility and efficacy of CD19-targeted CAR T cells with concurrent ibrutinib for CLL after ibrutinib failure. Blood, 2020, 135, 1650-1660.	0.6	222
32	The B-cell tumor–associated antigen ROR1 can be targeted with T cells modified to express a ROR1-specific chimeric antigen receptor. Blood, 2010, 116, 4532-4541.	0.6	221
33	Logic-Gated ROR1 Chimeric Antigen Receptor Expression Rescues T Cell-Mediated Toxicity to Normal Tissues and Enables Selective Tumor Targeting. Cancer Cell, 2019, 35, 489-503.e8.	7.7	218
34	Î ³ -Secretase inhibition increases efficacy of BCMA-specific chimeric antigen receptor T cells in multiple myeloma. Blood, 2019, 134, 1585-1597.	0.6	209
35	Generation of CD19-chimeric antigen receptor modified CD8+ T cells derived from virus-specific central memory T cells. Blood, 2012, 119, 72-82.	0.6	186
36	Chimeric Antigen Receptor T Cell–Mediated Neurotoxicity in Nonhuman Primates. Cancer Discovery, 2018, 8, 750-763.	7.7	184

#	Article	IF	CITATIONS
37	Role of memory T cell subsets for adoptive immunotherapy. Seminars in Immunology, 2016, 28, 28-34.	2.7	179
38	Combining a CD20 Chimeric Antigen Receptor and an Inducible Caspase 9 Suicide Switch to Improve the Efficacy and Safety of T Cell Adoptive Immunotherapy for Lymphoma. PLoS ONE, 2013, 8, e82742.	1.1	167
39	Immunogenic Chemotherapy Enhances Recruitment of CAR-T Cells to Lung Tumors and Improves Antitumor Efficacy when Combined with Checkpoint Blockade. Cancer Cell, 2021, 39, 193-208.e10.	7.7	157
40	Chimeric Antigen Receptor T Cell Therapy: Challenges to Bench-to-Bedside Efficacy. Journal of Immunology, 2018, 200, 459-468.	0.4	155
41	Safety of Targeting ROR1 in Primates with Chimeric Antigen Receptor–Modified T Cells. Cancer Immunology Research, 2015, 3, 206-216.	1.6	138
42	Design and implementation of adoptive therapy with chimeric antigen receptorâ€modified T cells. Immunological Reviews, 2014, 257, 127-144.	2.8	134
43	Analysis of ROR1 Protein Expression in Human Cancer and Normal Tissues. Clinical Cancer Research, 2017, 23, 3061-3071.	3.2	134
44	High rate of durable complete remission in follicular lymphoma after CD19 CAR-T cell immunotherapy. Blood, 2019, 134, 636-640.	0.6	127
45	Chimeric antigen receptor–modified T cells: CD19 and the road beyond. Blood, 2018, 131, 2621-2629.	0.6	126
46	Designed protein logic to target cells with precise combinations of surface antigens. Science, 2020, 369, 1637-1643.	6.0	117
47	Factors associated with outcomes after a second CD19-targeted CAR T-cell infusion for refractory B-cell malignancies. Blood, 2021, 137, 323-335.	0.6	111
48	Pancreatic Ductal Adenocarcinoma Contains an Effector and Regulatory Immune Cell Infiltrate that Is Altered by Multimodal Neoadjuvant Treatment. PLoS ONE, 2014, 9, e96565.	1.1	108
49	Leukemia-associated minor histocompatibility antigen discovery using T-cell clones isolated by in vitro stimulation of naive CD8+ T cells. Blood, 2010, 115, 4923-4933.	0.6	98
50	Engineering Human Peripheral Blood Stem Cell Grafts that Are Depleted of NaÃ⁻ve T Cells and Retain Functional Pathogen-Specific Memory T Cells. Biology of Blood and Marrow Transplantation, 2014, 20, 705-716.	2.0	93
51	TCR-Ligand <i>k</i> _{off} Rate Correlates with the Protective Capacity of Antigen-Specific CD8 ⁺ T Cells for Adoptive Transfer. Science Translational Medicine, 2013, 5, 192ra87.	5.8	91
52	Fully Human Bcma Targeted Chimeric Antigen Receptor T Cells Administered in a Defined Composition Demonstrate Potency at Low Doses in Advanced Stage High Risk Multiple Myeloma. Blood, 2018, 132, 1011-1011.	0.6	91
53	Graft-Derived Reconstitution of Mucosal-Associated Invariant T Cells after Allogeneic Hematopoietic Cell Transplantation. Biology of Blood and Marrow Transplantation, 2018, 24, 242-251.	2.0	70
54	Comparative analysis of TCR and CAR signaling informs CAR designs with superior antigen sensitivity and in vivo function. Science Signaling, 2021, 14, .	1.6	67

#	Article	IF	CITATIONS
55	Tetramer guided, cell sorter assisted production of clinical grade autologous NY-ESO-1 specific CD8+ T cells. , 2014, 2, 36.		57
56	Inclusion of Strep-tag II in design of antigen receptors for T-cell immunotherapy. Nature Biotechnology, 2016, 34, 430-434.	9.4	56
57	Novel Serial Positive Enrichment Technology Enables Clinical Multiparameter Cell Sorting. PLoS ONE, 2012, 7, e35798.	1.1	54
58	Durable preservation of antiviral antibodies after CD19-directed chimeric antigen receptor T-cell immunotherapy. Blood Advances, 2019, 3, 3590-3601.	2.5	52
59	Anti-CD19 Chimeric Antigen Receptor-Modified T Cell Therapy for B Cell Non-Hodgkin Lymphoma and Chronic Lymphocytic Leukemia: Fludarabine and Cyclophosphamide Lymphodepletion Improves In Vivo Expansion and Persistence of CAR-T Cells and Clinical Outcomes. Blood, 2015, 126, 184-184.	0.6	49
60	Multispecific Targeting with Synthetic Ankyrin Repeat Motif Chimeric Antigen Receptors. Clinical Cancer Research, 2019, 25, 7506-7516.	3.2	43
61	Cytomegalovirus Exposure in the Elderly Does Not Reduce CD8 T Cell Repertoire Diversity. Journal of Immunology, 2019, 202, 476-483.	0.4	41
62	Addition of Fludarabine to Cyclophosphamide Lymphodepletion Improves In Vivo Expansion of CD19 Chimeric Antigen Receptor-Modified T Cells and Clinical Outcome in Adults with B Cell Acute Lymphoblastic Leukemia. Blood, 2015, 126, 3773-3773.	0.6	39
63	Naive T-Cell Depletion to Prevent Chronic Graft-Versus-Host Disease. Journal of Clinical Oncology, 2022, 40, 1174-1185.	0.8	36
64	T-Cell Therapy of Leukemia. Cancer Control, 2002, 9, 114-122.	0.7	33
65	Metabolic regulation by PD-1 signaling promotes long-lived quiescent CD8 T cell memory in mice. Science Translational Medicine, 2021, 13, eaba6006.	5.8	33
66	Preserved Activity of CD20-Specific Chimeric Antigen Receptor–Expressing T Cells in the Presence of Rituximab. Cancer Immunology Research, 2016, 4, 509-519.	1.6	27
67	Finding a Place for Tumor-specific T Cells in Targeted Cancer Therapy. Journal of Experimental Medicine, 2004, 200, 1533-1537.	4.2	24
68	Human HLA-A*02:01/CHM1+ allo-restricted T cell receptor transgenic CD8+ T Cells specifically inhibit Ewing sarcoma growth <i>in vitro</i> and <i>in vivo</i> . Oncotarget, 2016, 7, 43267-43280.	0.8	21
69	Adrenaline fuels a cytokine storm during immunotherapy. Nature, 2018, 564, 194-196.	13.7	18
70	Dual Targeting with CAR T Cells to Limit Antigen Escape in Multiple Myeloma. Blood Cancer Discovery, 2020, 1, 130-133.	2.6	12
71	Pathogen-Specific Humoral Immunity and Infections in B Cell Maturation Antigen-Directed Chimeric Antigen Receptor T Cell Therapy Recipients with Multiple Myeloma. Transplantation and Cellular Therapy, 2022, 28, 304.e1-304.e9.	0.6	12
72	CD19 CAR-T Cells Are Highly Effective in Ibrutinib-Refractory Chronic Lymphocytic Leukemia. Blood, 2016, 128, 56-56.	0.6	11

#	Article	IF	CITATIONS
73	Tumor-infiltrating lymphocytes make inroads in non–small-cell lung cancer. Nature Medicine, 2021, 27, 1339-1341.	15.2	9
74	B7-H3 Specific CAR T Cells for the Naturally Occurring, Spontaneous Canine Sarcoma Model. Molecular Cancer Therapeutics, 2022, 21, 999-1009.	1.9	8
75	Synthetic receptors for logic gated T cell recognition and function. Current Opinion in Immunology, 2022, 74, 9-17.	2.4	7
76	Human Minor Histocompatibility Antigen-Specific CD8+ T Cells Are Found Predominantly in the CD45RA+ CD62L+ Nail`ve T Cell Subset Blood, 2005, 106, 578-578.	0.6	7
77	High IL-15 Serum Concentrations Are Associated with Response to CD19 CAR T-Cell Therapy and Robust In Vivo CAR T-Cell Kinetics. Blood, 2020, 136, 37-38.	0.6	6
78	A BiTE from cancer's intracellular menu. Nature Biotechnology, 2015, 33, 1040-1041.	9.4	3
79	The Non-Signaling Extracellular Spacer Domain of CD19-Specific Chimeric Antigen Receptors Is Decisive for in Vivo Anti-Tumor Activity. Blood, 2012, 120, 951-951.	0.6	3
80	Viral Genome Scan for Analysis of CMV-Specific CD8+ T Cells in Normal and Immunocompromised Individuals Blood, 2007, 110, 1068-1068.	0.6	1
81	Adoptive Cellular Therapy for Follicular Lymphoma Using Genetically-Modified Autologous CD20-Specific T Cells Blood, 2007, 110, 499-499.	0.6	1
82	Synthetic HLA-independent TÂcell receptors for cancer immunotherapy. Cancer Cell, 2022, 40, 359-361.	7.7	1
83	Tinkering in the garage — tuning CARs for safety. Nature Reviews Clinical Oncology, 2019, 16, 530-532.	12.5	0
84	Impact of Homozygous Deletion of UGT2B17 on Outcome of Allogeneic BMT Blood, 2004, 104, 1837-1837.	0.6	0
85	IL15, but Not IL2, Supports Long-Term Survival and Function of Human and Macaque Antigen-Specific CD8+ T Cell Clones Blood, 2004, 104, 3237-3237.	0.6	0
86	Increased Risk for Treatment-Related Mortality of Bone Marrow Transplantation in GSTM1-Positive Recipients Blood, 2005, 106, 1756-1756.	0.6	0
87	Development of Chronic Lymphocytic Leukemia (CLL) Reactive Cytotoxic T Lymphocytes after Non-Myeloablative Hematopoietic Stem Cell Transplant Correlates with Anti-Leukemia Response Blood, 2006, 108, 413-413.	0.6	0
88	Cytomegalovirus-Specific T Cells Are Elicited Early After Umbilical Cord Blood Transplant but Fail to Expand In Vivo and Control Virus Replication. Blood, 2011, 118, 1974-1974.	0.6	0