Chunni Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4640316/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Model of electrical activity in a neuron under magnetic flow effect. Nonlinear Dynamics, 2016, 85, 1479-1490.	2.7	388
2	Dynamical responses in a new neuron model subjected to electromagnetic induction and phase noise. Physica A: Statistical Mechanics and Its Applications, 2017, 469, 81-88.	1.2	141
3	Model of electrical activity in cardiac tissue under electromagnetic induction. Scientific Reports, 2016, 6, 28.	1.6	129
4	Dynamics of electric activities in neuron and neurons of network induced by autapses. Science China Technological Sciences, 2014, 57, 936-946.	2.0	126
5	Transition of electric activity of neurons induced by chemical and electric autapses. Science China Technological Sciences, 2015, 58, 1007-1014.	2.0	124
6	Synchronization behaviors of coupled neurons under electromagnetic radiation. International Journal of Modern Physics B, 2017, 31, 1650251.	1.0	114
7	Wave emitting and propagation induced by autapse in a forward feedback neuronal network. Neurocomputing, 2015, 167, 378-389.	3.5	113
8	Synchronization behavior of coupled neuron circuits composed of memristors. Nonlinear Dynamics, 2017, 88, 893-901.	2.7	97
9	Phase coupling synchronization of FHN neurons connected by a Josephson junction. Science China Technological Sciences, 2020, 63, 2328-2338.	2.0	87
10	Autapse-induced synchronization in a coupled neuronal network. Chaos, Solitons and Fractals, 2015, 80, 31-38.	2.5	84
11	A review and guidance for pattern selection in spatiotemporal system. International Journal of Modern Physics B, 2018, 32, 1830003.	1.0	84
12	Synchronization realization between two nonlinear circuits via an induction coil coupling. Nonlinear Dynamics, 2019, 96, 205-217.	2.7	80
13	Autapse-induced target wave, spiral wave in regular network of neurons. Science China: Physics, Mechanics and Astronomy, 2014, 57, 1918-1926.	2.0	79
14	First-principles investigation of hydrogen storage capacity of Y-decorated porous graphene. Applied Surface Science, 2017, 399, 463-468.	3.1	78
15	Parameters estimation, mixed synchronization, and antisynchronization in chaotic systems. Complexity, 2014, 20, 64-73.	0.9	77
16	Hydrogen storage capacity on Ti-decorated porous graphene: First-principles investigation. Applied Surface Science, 2018, 434, 843-849.	3.1	74
17	Minireview on signal exchange between nonlinear circuits and neurons via field coupling. European Physical Journal: Special Topics, 2019, 228, 1907-1924.	1.2	70
18	Emitting waves from defects in network with autapses. Communications in Nonlinear Science and Numerical Simulation, 2015, 23, 164-174.	1.7	67

#	Article	IF	CITATIONS
19	Simulating the formation of spiral wave in the neuronal system. Nonlinear Dynamics, 2013, 73, 73-83.	2.7	65
20	Prediction for breakup of spiral wave in a regular neuronal network. Nonlinear Dynamics, 2016, 84, 497-509.	2.7	64
21	Collective response, synapse coupling and field coupling in neuronal network. Chaos, Solitons and Fractals, 2017, 105, 120-127.	2.5	57
22	Controlling a chaotic resonator by means of dynamic track control. Complexity, 2015, 21, 370-378.	0.9	55
23	Transition from spiral wave to target wave and other coherent structures in the networks of Hodgkin–Huxley neurons. Applied Mathematics and Computation, 2010, 217, 3844-3852.	1.4	53
24	Chaos and multi-scroll attractors in RCL-shunted junction coupled Jerk circuit connected by memristor. PLoS ONE, 2018, 13, e0191120.	1.1	53
25	Mode selection in electrical activities of myocardial cell exposed to electromagnetic radiation. Chaos, Solitons and Fractals, 2017, 99, 219-225.	2.5	51
26	Chaos control, spiral wave formation, and the emergence ofÂspatiotemporal chaos in networked Chua circuits. Nonlinear Dynamics, 2012, 67, 139-146.	2.7	47
27	Formation of Autapse Connected to Neuron and Its Biological Function. Complexity, 2017, 2017, 1-9.	0.9	47
28	Energy dependence on modes of electric activities of neuron driven by multi-channel signals. Nonlinear Dynamics, 2017, 89, 1967-1987.	2.7	46
29	Autapse-Induced Spiral Wave in Network of Neurons under Noise. PLoS ONE, 2014, 9, e100849.	1.1	44
30	Investigation of dynamical behaviors of neurons driven by memristive synapse. Chaos, Solitons and Fractals, 2018, 108, 15-24.	2.5	43
31	Control and synchronization in nonlinear circuits by using a thermistor. Modern Physics Letters B, 2020, 34, 2050267.	1.0	40
32	Synchronization between neural circuits connected by hybrid synapse. International Journal of Modern Physics B, 2019, 33, 1950170.	1.0	39
33	Capacitor coupling induces synchronization between neural circuits. Nonlinear Dynamics, 2019, 97, 2661-2673.	2.7	39
34	Synchronization stability and pattern selection in a memristive neuronal network. Chaos, 2017, 27, 113108.	1.0	38
35	Pattern selection and self-organization induced by random boundary initial values in a neuronal network. Physica A: Statistical Mechanics and Its Applications, 2016, 461, 586-594.	1.2	34
36	Autaptic Modulation of Electrical Activity in a Network of Neuron-Coupled Astrocyte. Complexity, 2017, 1-13.	0.9	31

#	Article	IF	CITATIONS
37	Control the collective behaviors in a functional neural network. Chaos, Solitons and Fractals, 2021, 152, 111361.	2.5	30
38	Collapse of ordered spatial pattern in neuronal network. Physica A: Statistical Mechanics and Its Applications, 2016, 451, 95-112.	1.2	29
39	Instability and Death of Spiral Wave in a Two-Dimensional Array of Hindmarsh–Rose Neurons. Communications in Theoretical Physics, 2010, 53, 382-388.	1.1	28
40	Coupling synchronization between photoelectric neurons by using memristive synapse. Optik, 2020, 218, 164993.	1.4	27
41	Calculation of Hamilton energy function of dynamical system by using Helmholtz theorem. Wuli Xuebao/Acta Physica Sinica, 2016, 65, 240501.	0.2	27
42	Regulating synchronous patterns in neurons and networks via field coupling. Communications in Nonlinear Science and Numerical Simulation, 2021, 95, 105583.	1.7	25
43	Control spiral and multi-spiral wave in the complex Ginzburg–Landau equation. Chaos, Solitons and Fractals, 2008, 38, 521-530.	2.5	23
44	Capacitive coupling memristive systems for energy balance. AEU - International Journal of Electronics and Communications, 2022, 153, 154280.	1.7	23
45	Transmission of blocked electric pulses in a cable neuron model by using an electric field. Neurocomputing, 2016, 216, 627-637.	3.5	22
46	Local pacing, noise induced ordered wave in a 2D lattice of neurons. Neurocomputing, 2016, 207, 398-407.	3.5	22
47	Field coupling-induced pattern formation in two-layer neuronal network. Physica A: Statistical Mechanics and Its Applications, 2018, 501, 141-152.	1.2	22
48	Simulated test of electric activity of neurons by using Josephson junction based on synchronization scheme. Communications in Nonlinear Science and Numerical Simulation, 2012, 17, 2659-2669.	1.7	20
49	Emergence of target waves in neuronal networks due to diverse forcing currents. Science China: Physics, Mechanics and Astronomy, 2013, 56, 1126-1138.	2.0	19
50	Eliminate spiral wave in excitable media by using a new feasible scheme. Communications in Nonlinear Science and Numerical Simulation, 2010, 15, 1768-1776.	1.7	18
51	Identification of parameters with different orders of magnitude in chaotic systems. Dynamical Systems, 2012, 27, 253-270.	0.2	18
52	Suppression of spiral waves in light-sensitive media using chaotic signal modulated scheme. Chaos, Solitons and Fractals, 2007, 33, 965-970.	2.5	17
53	Defects formation and wave emitting from defects in excitable media. Communications in Nonlinear Science and Numerical Simulation, 2016, 34, 55-65.	1.7	17
54	Electric Field-induced dynamical evolution of spiral wave in the regular networks of Hodgkin–Huxley neurons. Applied Mathematics and Computation, 2011, 218, 4467-4474.	1.4	15

#	Article	IF	CITATIONS
55	Synchronization behaviors of coupled systems composed of hidden attractors. International Journal of Modern Physics B, 2017, 31, 1750180.	1.0	15
56	Stability of target waves in excitable media under electromagnetic induction and radiation. Physica A: Statistical Mechanics and Its Applications, 2019, 521, 519-530.	1.2	15
57	Capturing and shunting energy in chaotic Chua circuit. Chaos, Solitons and Fractals, 2020, 134, 109697.	2.5	15
58	Suppression of the Spiral Wave and Turbulence inÂtheÂExcitability-Modulated Media. International Journal of Theoretical Physics, 2009, 48, 150-157.	0.5	14
59	Target wave in the network coupled by thermistors. Chaos, Solitons and Fractals, 2021, 142, 110455.	2.5	14
60	The instability of the spiral wave induced by the deformation of elastic excitable media. Journal of Physics A: Mathematical and Theoretical, 2008, 41, 385105.	0.7	12
61	PROPAGATION AND SYNCHRONIZATION OF Ca²⁺ SPIRAL WAVES IN EXCITABLE MEDIA. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2011, 21, 587-601.	0.7	12
62	Formation of multi-armed spiral waves in neuronal network induced by adjusting ion channel conductance. International Journal of Modern Physics B, 2015, 29, 1550043.	1.0	12
63	Computer Simulation of Noise Effects of the Neighborhood of Stimulus Threshold for a Mathematical Model of Homeostatic Regulation of Sleep-Wake Cycles. Complexity, 2017, 2017, 1-7.	0.9	12
64	TRANSITION OF SPIRAL WAVE IN A MODEL OF TWO-DIMENSIONAL ARRAYS OF HINDMARSH–ROSE NEURONS. International Journal of Modern Physics B, 2011, 25, 1653-1670.	1.0	10
65	Phase synchronization of memristive systems by using saturation gain method. International Journal of Modern Physics B, 2020, 34, 2050074.	1.0	10
66	Desynchronization of thermosensitive neurons by using energy pumping. Physica A: Statistical Mechanics and Its Applications, 2022, 602, 127644.	1.2	10
67	Evolution of spiral waves subjected to parameter modulation under chaotic signal. Physica A: Statistical Mechanics and Its Applications, 2006, 369, 387-392.	1.2	9
68	Synchronization transition in degenerate optical parametric oscillators induced by nonlinear coupling. Applied Mathematics and Computation, 2010, 216, 647-654.	1.4	7
69	Reliability of linear coupling synchronization of hyperchaotic systems with unknown parameters. Chinese Physics B, 2013, 22, 100502.	0.7	7
70	Suppression of the spiral wave in cardiac tissue by using forcing currents with diversity. Wuli Xuebao/Acta Physica Sinica, 2013, 62, 084501.	0.2	7
71	Deformation and death of spiral wave induced by asymmetrical diffusion in elastic media. Communications in Nonlinear Science and Numerical Simulation, 2010, 15, 3913-3918.	1.7	6
72	Phase synchronization between nonlinear circuits by capturing electromagnetic field energy. Modern Physics Letters B, 2020, 34, 2050323.	1.0	5

#	Article	IF	CITATIONS
73	Investigation of emergence of target wave and spiral wave in neuronal network induced by gradient coupling. Wuli Xuebao/Acta Physica Sinica, 2015, 64, 198701.	0.2	4
74	Dependence of hidden attractors on non-linearity and Hamilton energy in a class of chaotic system. Kybernetika, 0, , 648-663.	0.0	3
75	Synchronization of Neuronal Circuits with Ring Connection on PSpice. Journal of Control Science and Engineering, 2016, 2016, 1-10.	0.8	2
76	Realization of synchronization of nonlinear oscillators under intermittent coupling controlled by pulse signal. Indian Journal of Physics, 2016, 90, 1155-1163.	0.9	2