Xudong Yang

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4640182/xudong-yang-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

102
papers2,278
citations28
h-index42
g-index103
ext. papers2,829
ext. citations7.2
avg, IF5.54
L-index

#	Paper	IF	Citations
102	Occupantslbn-demand control of individual heating devices in rural residential buildings: An experimental scheme and on-site study. <i>Energy and Buildings</i> , 2022 , 259, 111862	7	1
101	Identification of key volatile organic compounds in aircraft cabins and associated inhalation health risks <i>Environment International</i> , 2022 , 158, 106999	12.9	4
100	Pollutant emission performances of improved solid fuel heating stoves and future implications in rural China. <i>Energy and Buildings</i> , 2022 , 257, 111810	7	O
99	An inversion method to estimate the thermal properties of heterogeneous soil for a large-scale borehole thermal energy storage system. <i>Energy and Buildings</i> , 2022 , 263, 112045	7	O
98	The impact of oxygen content in the primary air supply on fuel burning rate and pollutant emissions in a forced-draft biomass stove. <i>Fuel</i> , 2022 , 321, 124129	7.1	1
97	Simulation for Indoor Air Quality Control 2022 , 1-40		
96	A study on human perception in aircraft cabins and its association with volatile organic compounds. <i>Building and Environment</i> , 2022 , 109167	6.5	O
95	Chemical Investigation of Household Solid Fuel Use and Outdoor Air Pollution Contributions to Personal PM Exposures. <i>Environmental Science & Environmental Science & Environm</i>	10.3	1
94	Low-grade industrial waste heat utilization in urban district heating: Simulation-based performance assessment of a seasonal thermal energy storage system. <i>Energy</i> , 2021 , 239, 122345	7.9	3
93	Long-term performance simulation and sensitivity analysis of a large-scale seasonal borehole thermal energy storage system for industrial waste heat and solar energy. <i>Energy and Buildings</i> , 2021 , 236, 110768	7	11
92	Carbon dioxide in passenger cabins: Spatial temporal characteristics and 30-year trends. <i>Indoor Air</i> , 2021 , 31, 2200-2212	5.4	8
91	Techno-economic performances of clean heating solutions to replace raw coal for heating in Northern rural China. <i>Energy and Buildings</i> , 2021 , 240, 110881	7	18
90	Influencing factors of carbonyl compounds and other VOCs in commercial airliner cabins: On-board investigation of 56 flights. <i>Indoor Air</i> , 2021 , 31, 2084-2098	5.4	3
89	Interactions between the Built Environment and the Energy-Related Behaviors of Occupants in Government Office Buildings. <i>Sustainability</i> , 2021 , 13, 10607	3.6	1
88	Investigating energy performance of large-scale seasonal storage in the district heating system of chifeng city: Measurements and model-based analysis of operation strategies. <i>Energy and Buildings</i> , 2021 , 247, 111113	7	3
87	Development of a physics-based model for analyzing formaldehyde emissions from building material under coupling effects of temperature and humidity. <i>Building and Environment</i> , 2021 , 203, 108	3078	4
86	Air pollutant emission factors of solid fuel stoves and estimated emission amounts in rural Beijing. <i>Environment International</i> , 2020 , 138, 105608	12.9	18

85	Large-scale living laboratory of seasonal borehole thermal energy storage system for urban district heating. <i>Applied Energy</i> , 2020 , 264, 114763	10.7	15
84	Identification of species and sources of atmospheric chromophores by fluorescence excitation-emission matrix with parallel factor analysis. <i>Science of the Total Environment</i> , 2020 , 718, 137	73 ¹ 22 ²	28
83	Source apportionment of volatile organic compounds (VOCs) in vehicle cabins diffusing from interior materials. Part I: Measurements of VOCs in new cars in China. <i>Building and Environment</i> , 2020 , 175, 106796	6.5	8
82	Impacts of stove/fuel use and outdoor air pollution on chemical composition of household particulate matter. <i>Indoor Air</i> , 2020 , 30, 294-305	5.4	6
81	Emissions of volatile organic compounds from interior materials of vehicles. <i>Building and Environment</i> , 2020 , 170, 106599	6.5	7
80	Long-term volatile organic compound emission rates in a new electric vehicle: Influence of temperature and vehicle age. <i>Building and Environment</i> , 2020 , 168, 106465	6.5	3
79	Household transitions to clean energy in a multiprovincial cohort study in China. <i>Nature Sustainability</i> , 2020 , 3, 42-50	22.1	44
78	Measurement of Personal Experienced Temperature Variations in Rural Households Using Wearable Monitors: A Pilot Study. <i>International Journal of Environmental Research and Public Health</i> , 2020 , 17,	4.6	4
77	An experimental method for measuring VOC emissions from individual human whole-body skin under controlled conditions. <i>Building and Environment</i> , 2020 , 181, 107137	6.5	7
76	Mathematical model development and optimal design of the horizontal all-glass evacuated tube solar collectors integrated with bottom mirror reflectors for solar energy harvesting. <i>Applied Energy</i> , 2019 , 238, 54-68	10.7	24
75	Effectiveness of a Household Energy Package in Improving Indoor Air Quality and Reducing Personal Exposures in Rural China. <i>Environmental Science & Environmental Science & E</i>	10.3	22
74	Differences in chemical composition of PM emissions from traditional versus advanced combustion (semi-gasifier) solid fuel stoves. <i>Chemosphere</i> , 2019 , 233, 852-861	8.4	18
73	Advanced household heat pumps for air pollution control: A pilot field study in Ulaanbaatar, the coldest capital city in the world. <i>Environmental Research</i> , 2019 , 176, 108381	7.9	11
72	Inhibitory effect of mould growth on formaldehyde emissions from medium-density fibreboards: Evidence from field observations in three experimental houses. <i>Indoor and Built Environment</i> , 2019 , 28, 999-1010	1.8	1
71	Improving material selection for residences using volatile organic compound simulation at design stage: Field verifications from a unique case study. <i>Building and Environment</i> , 2019 , 157, 277-283	6.5	3
70	A test-based method for estimating the service life of adsorptive portable air cleaners in removing indoor formaldehyde. <i>Building and Environment</i> , 2019 , 154, 89-96	6.5	4
69	Energy and environmental impact assessment of straw return and substitution of straw briquettes for heating coal in rural China. <i>Energy Policy</i> , 2019 , 128, 654-664	7.2	24
68	A one-dimensional VOC emission model of moisture-dominated cure adhesives. <i>Building and Environment</i> , 2019 , 156, 171-177	6.5	11

67	Measuring whole-body volatile organic compound emission by humans: A pilot study using an air-tight environmental chamber. <i>Building and Environment</i> , 2019 , 153, 101-109	6.5	21
66	Chemical composition and source apportionment of ambient, household, and personal exposures to PM in communities using biomass stoves in rural China. <i>Science of the Total Environment</i> , 2019 , 646, 309-319	10.2	38
65	Exposure R esponse Associations of Household Air Pollution and Buccal Cell Telomere Length in Women Using Biomass Stoves. <i>Environmental Health Perspectives</i> , 2019 , 127, 87004	8.4	9
64	Longitudinal evaluation of a household energy package on blood pressure, central hemodynamics, and arterial stiffness in China. <i>Environmental Research</i> , 2019 , 177, 108592	7.9	12
63	Characterizing dynamic relationships between burning rate and pollutant emission rates in a forced-draft gasifier stove consuming biomass pellet fuels. <i>Environmental Pollution</i> , 2019 , 255, 113338	9.3	12
62	Human respiratory system as sink for volatile organic compounds: Evidence from field measurements. <i>Indoor Air</i> , 2019 , 29, 968-978	5.4	10
61	The role of simulation in preventing indoor air pollution: a foregone conclusion?. <i>IOP Conference Series: Materials Science and Engineering</i> , 2019 , 609, 022005	0.4	1
60	Research on the influence of coal to electric heating on regional power grid in Northern China. <i>IOP Conference Series: Materials Science and Engineering</i> , 2019 , 609, 052041	0.4	
59	Long-life type The dominant fraction of EPFRs in combustion sources and ambient fine particles in Xi'an. <i>Atmospheric Environment</i> , 2019 , 219, 117059	5.3	10
58	A predictive model for the formaldehyde removal performance of sorption-based portable air cleaners with pleated composite filter. <i>Building and Environment</i> , 2019 , 147, 517-527	6.5	5
57	Real-time combustion rate of wood charcoal in the heating fire basin: Direct measurement and its correlation to CO emissions. <i>Environmental Pollution</i> , 2019 , 245, 38-45	9.3	8
56	Analysis on the optimum matching of collector and storage size of solar water heating systems in building space heating applications. <i>Building Simulation</i> , 2018 , 11, 549-560	3.9	17
55	Household air pollution and measures of blood pressure, arterial stiffness and central haemodynamics. <i>Heart</i> , 2018 , 104, 1515-1521	5.1	41
54	Impacts of stove use patterns and outdoor air quality on household air pollution and cardiovascular mortality in southwestern China. <i>Environment International</i> , 2018 , 117, 116-124	12.9	37
53	Performance of sorption-based portable air cleaners in formaldehyde removal: Laboratory tests and field verification. <i>Building and Environment</i> , 2018 , 136, 177-184	6.5	17
52	Effect of straw incorporation on aldehyde emissions from a maize cropping system: A field experiment. <i>Atmospheric Environment</i> , 2018 , 189, 116-124	5.3	2
51	Development of Renewable, Densified Biomass for Household Energy in China. <i>Energy for Sustainable Development</i> , 2018 , 46, 42-52	5.4	29
50	Change in household fuels dominates the decrease in PM exposure and premature mortality in China in 2005-2015. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 12401-12406	11.5	175

(2016-2018)

49	The impact of cookstove operation on PM and CO emissions: A comparison of laboratory and field measurements. <i>Environmental Pollution</i> , 2018 , 243, 1087-1095	9.3	26	
48	A field experimental study on non-methane hydrocarbon (NMHC) emissions from a straw-returned maize cropping system. <i>Science of the Total Environment</i> , 2018 , 636, 530-538	10.2	7	
47	The impact of household cooking and heating with solid fuels on ambient PM 2.5 in peri-urban Beijing. <i>Atmospheric Environment</i> , 2017 , 165, 62-72	5.3	30	
46	Enhancement of formaldehyde removal by activated carbon fiber via in situ growth of carbon nanotubes. <i>Building and Environment</i> , 2017 , 126, 27-33	6.5	35	
45	Carbon nanotubes / activated carbon fiber based air filter media for simultaneous removal of particulate matter and ozone. <i>Building and Environment</i> , 2017 , 125, 60-66	6.5	38	
44	A user-centered, iterative engineering approach for advanced biomass cookstove design and development. <i>Environmental Research Letters</i> , 2017 , 12, 095009	6.2	24	
43	Occupant control patterns of low temperature air-to-air heat pumps in Chinese rural households based on field measurements. <i>Energy and Buildings</i> , 2017 , 154, 157-165	7	15	
42	Human breath as a source of VOCs in the built environment, Part II: Concentration levels, emission rates and factor analysis. <i>Building and Environment</i> , 2017 , 123, 437-445	6.5	26	
41	Human breath as a source of VOCs in the built environment, Part I: A method for sampling and detection species. <i>Building and Environment</i> , 2017 , 125, 565-573	6.5	20	
40	Entransy analysis on the thermal performance of flat plate solar air collectors. <i>Building Simulation</i> , 2017 , 10, 193-202	3.9	2	
39	A central solar-industrial waste heat heating system with large scale borehole thermal storage. <i>Procedia Engineering</i> , 2017 , 205, 1584-1591		11	
38	Removal of Ozone by Carbon Nanotubes/Quartz Fiber Film. <i>Environmental Science & Environmental Science</i>	10.3	21	
37	The oxidative potential of PM2.5 exposures from indoor and outdoor sources in rural China. <i>Science of the Total Environment</i> , 2016 , 571, 1477-89	10.2	40	
36	Study on the thermodynamic characteristic matching property and limit design principle of general flat plate solar air collectors (FPSACs). <i>Building Simulation</i> , 2016 , 9, 529-540	3.9	7	
35	Seasonal variation in outdoor, indoor, and personal air pollution exposures of women using wood stoves in the Tibetan Plateau: Baseline assessment for an energy intervention study. <i>Environment International</i> , 2016 , 94, 449-457	12.9	79	
34	Volatile organic compounds (VOCs) formation due to interactions between ozone and skin-oiled clothing: Measurements by extraction-analysis-reaction method. <i>Building and Environment</i> , 2016 , 103, 146-154	6.5	30	
33	Seasonal and Diurnal Air Pollution from Residential Cooking and Space Heating in the Eastern Tibetan Plateau. <i>Environmental Science & Environmental S</i>	10.3	50	
32	Re-thinking china's densified biomass fuel policies: Large or small scale?. <i>Energy Policy</i> , 2016 , 93, 119-12	267.2	22	

31	The combined effects of temperature and humidity on initial emittable formaldehyde concentration of a medium-density fiberboard. <i>Building and Environment</i> , 2016 , 98, 80-88	6.5	43
30	Dynamic thermal performance prediction model for the flat-plate solar collectors based on the two-node lumped heat capacitance method. <i>Solar Energy</i> , 2016 , 135, 769-779	6.8	27
29	Person to person droplets transmission characteristics in unidirectional ventilated protective isolation room: The impact of initial droplet size. <i>Building Simulation</i> , 2016 , 9, 597-606	3.9	23
28	The effect of humidity on formaldehyde emission parameters of a medium-density fiberboard: Experimental observations and correlations. <i>Building and Environment</i> , 2016 , 101, 110-115	6.5	33
27	Energy and environment in Chinese rural buildings: Situations, challenges, and intervention strategies. <i>Building and Environment</i> , 2015 , 91, 271-282	6.5	78
26	Net in-cabin emission rates of VOCs and contributions from outside and inside the aircraft cabin. <i>Atmospheric Environment</i> , 2015 , 111, 1-9	5.3	14
25	Situations and challenges of household energy consumption in Chinese small towns. <i>Energy and Buildings</i> , 2015 , 107, 155-162	7	13
24	Estimation of the contribution of human skin and ozone reaction to volatile organic compounds (VOC) concentration in aircraft cabins. <i>Building and Environment</i> , 2015 , 94, 12-20	6.5	22
23	Long-Term Formaldehyde Emissions from Medium-Density Fiberboard in a Full-Scale Experimental Room: Emission Characteristics and the Effects of Temperature and Humidity. <i>Environmental Science & Emperature and Fiberboard in a Full-Scale Experimental Science & Emperature and Fiberboard in a Full-Scale Experimental Room: Emperature and Humidity. Environmental Science & Emperature and Humidity. Environmental Room: Emperature and Humidity. Environmental Science & Emperature and Humidity. Environmental Room: Emperatu</i>	10.3	71
22	A dynamic thermal performance model for flat-plate solar collectors based on the thermal inertia correction of the steady-state test method. <i>Renewable Energy</i> , 2015 , 76, 679-686	8.1	24
21	A new Chinese Kang with forced convection: System design and thermal performance measurements. <i>Energy and Buildings</i> , 2014 , 85, 410-415	7	21
20	A feasibility study of the association of exposure to biomass smoke with vascular function, inflammation, and cellular aging. <i>Environmental Research</i> , 2014 , 135, 165-72	7.9	58
19	Thermal performance of a traditional Chinese heated wall with the in-series flow pass: Experiment and modeling. <i>Energy and Buildings</i> , 2014 , 84, 46-54	7	8
18	Pollutant emissions and energy efficiency of Chinese gasifier cooking stoves and implications for future intervention studies. <i>Environmental Science & Environmental Science </i>	10.3	78
17	Source apportionment of volatile organic compounds (VOCs) in aircraft cabins. <i>Building and Environment</i> , 2014 , 81, 1-6	6.5	35
16	Volatile organic compounds in different interior construction stages of an apartment. <i>Building and Environment</i> , 2014 , 81, 380-387	6.5	28
15	Source apportionment of airborne particles in commercial aircraft cabin environment: Contributions from outside and inside of cabin. <i>Atmospheric Environment</i> , 2014 , 89, 119-128	5.3	27
14	Volatile organic compounds in aircraft cabin: Measurements and correlations between compounds. Building and Environment, 2014, 78, 89-94	6.5	25

LIST OF PUBLICATIONS

13	Long-term concentrations of volatile organic compounds in a new apartment in Beijing, China. <i>Building and Environment</i> , 2014 , 82, 693-701	6.5	31
12	Measurements of volatile organic compounds in aircraft cabins. Part II: Target list, concentration levels and possible influencing factors. <i>Building and Environment</i> , 2014 , 75, 170-175	6.5	22
11	Thermal analysis of a new solar kang system. <i>Energy and Buildings</i> , 2014 , 75, 531-537	7	18
10	Measurements of volatile organic compounds in aircraft cabins. Part I: Methodology and detected VOC species in 107 commercial flights. <i>Building and Environment</i> , 2014 , 72, 154-161	6.5	44
9	Design and optimization of a solar air heater with offset strip fin absorber plate. <i>Applied Energy</i> , 2014 , 113, 1349-1362	10.7	63
8	A new Chinese solar kang and its dynamic heat transfer model. <i>Energy and Buildings</i> , 2013 , 62, 539-549	7	25
7	Indoor formaldehyde in real buildings: Emission source identification, overall emission rate estimation, concentration increase and decay patterns. <i>Building and Environment</i> , 2013 , 69, 114-120	6.5	35
6	Modeling volatile organic compound (VOC) concentrations due to material emissions in a real residential unit. Part I: Methodology and a preliminary case study. <i>Building Simulation</i> , 2012 , 5, 351-357	3.9	19
5	Experimental analysis on thermal performance of a solar air collector with a single pass. <i>Building and Environment</i> , 2012 , 56, 361-369	6.5	37
4	Energy and environment in Chinese rural housing: Current status and future perspective. <i>Frontiers of Energy and Power Engineering in China</i> , 2010 , 4, 35-46		22
3	Thermal and energy analysis of a Chinese kang. <i>Frontiers of Energy and Power Engineering in China</i> , 2010 , 4, 84-92		3
2	Study on a new correlation between diffusion coefficient and temperature in porous building materials. <i>Atmospheric Environment</i> , 2009 , 43, 2080-2083	5.3	74
1	On regression method to obtain emission parameters of building materials. <i>Building and Environment</i> , 2005 , 40, 1282-1287	6.5	14