
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4639988/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Petrophysical characterization of coals by low-field nuclear magnetic resonance (NMR). Fuel, 2010, 89, 1371-1380.	3.4	689
2	Fractal characterization of adsorption-pores of coals from North China: An investigation on CH4 adsorption capacity of coals. International Journal of Coal Geology, 2008, 73, 27-42.	1.9	618
3	Pore structure and its impact on CH4 adsorption capacity and flow capability of bituminous and subbituminous coals from Northeast China. Fuel, 2013, 103, 258-268.	3.4	554
4	Comparison of low-field NMR and mercury intrusion porosimetry in characterizing pore size distributions of coals. Fuel, 2012, 95, 152-158.	3.4	521
5	Fractal characterization of seepage-pores of coals from China: An investigation on permeability of coals. Computers and Geosciences, 2009, 35, 1159-1166.	2.0	291
6	Geological controls on prediction of coalbed methane of No. 3 coal seam in Southern Qinshui Basin, North China. International Journal of Coal Geology, 2011, 88, 101-112.	1.9	257
7	Fractal characterization of pore–fracture in low-rank coals using a low-field NMR relaxation method. Fuel, 2016, 181, 218-226.	3.4	200
8	Non-destructive characterization of coal samples from China using microfocus X-ray computed tomography. International Journal of Coal Geology, 2009, 80, 113-123.	1.9	191
9	Preliminary evaluation of the coalbed methane production potential and its geological controls in the Weibei Coalfield, Southeastern Ordos Basin, China. International Journal of Coal Geology, 2009, 78, 1-15.	1.9	180
10	Permeability evolution in fractured coal — Combining triaxial confinement with X-ray computed tomography, acoustic emission and ultrasonic techniques. International Journal of Coal Geology, 2014, 122, 91-104.	1.9	178
11	Characterizations of full-scale pore size distribution, porosity and permeability of coals: A novel methodology by nuclear magnetic resonance and fractal analysis theory. International Journal of Coal Geology, 2018, 196, 148-158.	1.9	174
12	Quantitative characterization of methane adsorption on coal using a low-field NMR relaxation method. International Journal of Coal Geology, 2014, 131, 32-40.	1.9	169
13	Coal reservoir characteristics and coalbed methane resource assessment in Huainan and Huaibei coalfields, Southern North China. International Journal of Coal Geology, 2009, 79, 97-112.	1.9	164
14	Application of nuclear magnetic resonance (NMR) in coalbed methane and shale reservoirs: A review. International Journal of Coal Geology, 2020, 218, 103261.	1.9	148
15	Advanced characterization of pores and fractures in coals by nuclear magnetic resonance and X-ray computed tomography. Science China Earth Sciences, 2010, 53, 854-862.	2.3	144
16	Petrophysical characterization of Chinese coal cores with heat treatment by nuclear magnetic resonance. Fuel, 2013, 108, 292-302.	3.4	144
17	Multi-scale quantitative characterization of 3-D pore-fracture networks in bituminous and anthracite coals using FIB-SEM tomography and X-ray μ-CT. Fuel, 2017, 209, 43-53.	3.4	140
18	Insights into matrix compressibility of coals by mercury intrusion porosimetry and N2 adsorption. International Journal of Coal Geology, 2018, 200, 199-212.	1.9	119

DAMENG LIU

#	Article	IF	CITATIONS
19	Experimental evaluation of CO 2 enhanced recovery of adsorbed-gas from shale. International Journal of Coal Geology, 2017, 179, 211-218.	1.9	112
20	Fractal Analysis on Heterogeneity of Pore–Fractures in Middle–High Rank Coals with NMR. Energy & Fuels, 2016, 30, 5449-5458.	2.5	106
21	Adsorption pore structure and its fractal characteristics of coals by N2 adsorption/desorption and FESEM image analyses. Fuel, 2019, 257, 116031.	3.4	100
22	Investigations of CO2-water wettability of coal: NMR relaxation method. International Journal of Coal Geology, 2018, 188, 38-50.	1.9	98
23	A new application of NMR in characterization of multiphase methane and adsorption capacity of shale. International Journal of Coal Geology, 2019, 201, 76-85.	1.9	96
24	Influences of igneous intrusions on coal rank, coal quality and adsorption capacity in Hongyang, Handan and Huaibei coalfields, North China. International Journal of Coal Geology, 2011, 88, 135-146.	1.9	92
25	Geological and hydrogeological controls on the accumulation of coalbed methane in the Weibei field, southeastern Ordos Basin. International Journal of Coal Geology, 2014, 121, 148-159.	1.9	92
26	Nuclear magnetic resonance T2 cutoffs of coals: A novel method by multifractal analysis theory. Fuel, 2019, 241, 715-724.	3.4	90
27	Evaluation of the reservoir permeability of anthracite coals by geophysical logging data. International Journal of Coal Geology, 2011, 87, 121-127.	1.9	85
28	Investigating the Effects of Seepage-Pores and Fractures on Coal Permeability by Fractal Analysis. Transport in Porous Media, 2016, 111, 479-497.	1.2	85
29	Evaluation of coal texture distributions in the southern Qinshui basin, North China: Investigation by a multiple geophysical logging method. International Journal of Coal Geology, 2015, 140, 9-22.	1.9	81
30	Assessing the Water Migration and Permeability of Large Intact Bituminous and Anthracite Coals Using NMR Relaxation Spectrometry. Transport in Porous Media, 2015, 107, 527-542.	1.2	81
31	3D characterization and quantitative evaluation of pore-fracture networks of two Chinese coals using FIB-SEM tomography. International Journal of Coal Geology, 2017, 174, 41-54.	1.9	78
32	Fractal Characteristics of Coal Pores Based on Classic Geometry and Thermodynamics Models. Acta Geologica Sinica, 2011, 85, 1150-1162.	0.8	68
33	Multi-scale fractal characterizations of lignite, subbituminous and high-volatile bituminous coals pores by mercury intrusion porosimetry. Journal of Natural Gas Science and Engineering, 2017, 44, 338-350.	2.1	68
34	Geological and hydrological controls on the accumulation of coalbed methane within the No. 3 coal seam of the southern Qinshui Basin. International Journal of Coal Geology, 2017, 182, 94-111.	1.9	68
35	Effects of igneous intrusions on coal petrology, pore-fracture and coalbed methane characteristics in Hongyang, Handan and Huaibei coalfields, North China. International Journal of Coal Geology, 2012, 96-97, 72-81.	1.9	67
36	Nuclear magnetic resonance surface relaxivity of coals. International Journal of Coal Geology, 2019, 205, 1-13.	1.9	65

#	Article	IF	CITATIONS
37	Evaluation and modeling of gas permeability changes in anthracite coals. Fuel, 2013, 111, 606-612.	3.4	61
38	Effects of Pressure and Temperature on Gas Diffusion and Flow for Primary and Enhanced Coalbed Methane Recovery. Energy Exploration and Exploitation, 2014, 32, 601-619.	1.1	60
39	Investigation of methane diffusion in low-rank coals by a multiporous diffusion model. Journal of Natural Gas Science and Engineering, 2016, 33, 97-107.	2.1	59
40	Characteristics of Coal Matrix Compressibility: An Investigation by Mercury Intrusion Porosimetry. Energy & Fuels, 2014, 28, 3673-3678.	2.5	57
41	Partial coal pyrolysis and its implication to enhance coalbed methane recovery, Part I: An experimental investigation. Fuel, 2014, 132, 12-19.	3.4	55
42	Coal Structure and Its Implications for Coalbed Methane Exploitation: A Review. Energy & Fuels, 2021, 35, 86-110.	2.5	55
43	Geochemistry of sulfur and elements in coals from the Antaibao surface mine, Pingshuo, Shanxi Province, China. International Journal of Coal Geology, 2001, 46, 51-64.	1.9	53
44	Variable gas content, saturation, and accumulation characteristics of Weibei coalbed methane pilot-production field in the southeastern Ordos Basin, China. AAPC Bulletin, 2013, 97, 1371-1393.	0.7	53
45	Mineral occurrence and its impact on fracture generation in selected Qinshui Basin coals: An experimental perspective. International Journal of Coal Geology, 2015, 150-151, 35-50.	1.9	52
46	Dynamic permeability change during coalbed methane production and its controlling factors. Journal of Natural Gas Science and Engineering, 2015, 25, 335-346.	2.1	51
47	Spontaneous imbibition in coal: Experimental and model analysis. Journal of Natural Gas Science and Engineering, 2019, 67, 108-121.	2.1	50
48	Evolution of pore structure, submaceral composition and produced gases of two Chinese coals during thermal treatment. Fuel Processing Technology, 2017, 156, 298-309.	3.7	48
49	Comparative analysis of nanopore structure and its effect on methane adsorption capacity of Southern Junggar coalfield coals by gas adsorption and FIB-SEM tomography. Microporous and Mesoporous Materials, 2018, 272, 117-128.	2.2	47
50	Fault-sealing capability and its impact on coalbed methane distribution in the Zhengzhuang field, southern Qinshui Basin, North China. Journal of Natural Gas Science and Engineering, 2016, 28, 613-625.	2.1	46
51	Natural fractures initiation and fracture type prediction in coal reservoir under different in-situ stresses during hydraulic fracturing. Journal of Natural Gas Science and Engineering, 2017, 43, 69-80.	2.1	44
52	Evaluation of structured coal evolution and distribution by geophysical logging methods in the Gujiao Block, northwest Qinshui basin, China. Journal of Natural Gas Science and Engineering, 2018, 51, 210-222.	2.1	44
53	Experimental simulation of the hydraulic fracture propagation in an anthracite coal reservoir in the southern Qinshui basin, China. Journal of Petroleum Science and Engineering, 2018, 168, 400-408.	2.1	43
54	Preliminary evaluation of gas content of the No. 2 coal seam in the Yanchuannan area, southeast Ordos basin, China. Journal of Petroleum Science and Engineering, 2014, 122, 675-689.	2.1	41

#	Article	IF	CITATIONS
55	Control of CO ₂ Permeability Change in Different Rank Coals during Pressure Depletion: An Experimental Study. Energy & Fuels, 2014, 28, 987-996.	2.5	39
56	Size Distribution and Fractal Characteristics of Coal Pores through Nuclear Magnetic Resonance Cryoporometry. Energy & 2017, 21, 7746-7757.	2.5	38
57	A new constructed macromolecule-pore structure of anthracite and its related gas adsorption: A molecular simulation study. International Journal of Coal Geology, 2020, 220, 103415.	1.9	37
58	Investigating the Fractal Characteristics of Pore-Fractures in Bituminous Coals and Anthracites through Fluid Flow Behavior. Energy & amp; Fuels, 2016, 30, 10348-10357.	2.5	36
59	Vertical Heterogeneity of the Shale Reservoir in the Lower Silurian Longmaxi Formation: Analogy between the Southeastern and Northeastern Sichuan Basin, SW China. Minerals (Basel, Switzerland), 2017, 7, 151.	0.8	36
60	Gas sorption and flow capabilities of lignite, subbituminous and high-volatile bituminous coals in the Southern Junggar Basin, NW China. Journal of Natural Gas Science and Engineering, 2016, 34, 6-21.	2.1	35
61	Evaluation of coal petrophysics incorporating fractal characteristics by mercury intrusion porosimetry and low-field NMR. Fuel, 2020, 263, 116802.	3.4	35
62	An updated study on CH4 isothermal adsorption and isosteric adsorption heat behaviors of variable rank coals. Journal of Natural Gas Science and Engineering, 2021, 89, 103899.	2.1	35
63	Coal petrology and genesis of Jurassic coal in the Ordos Basin, China. Geoscience Frontiers, 2012, 3, 85-95.	4.3	33
64	Pore Structure and Compressibility of Coal Matrix with Elevated Temperatures by Mercury Intrusion Porosimetry. Energy Exploration and Exploitation, 2015, 33, 809-826.	1.1	33
65	Scale-span pore structure heterogeneity of high volatile bituminous coal and anthracite by FIB-SEM and X-ray 1¼-CT. Journal of Natural Gas Science and Engineering, 2020, 81, 103443.	2.1	33
66	Spontaneous imbibition in coal with in-situ dynamic micro-CT imaging. Journal of Petroleum Science and Engineering, 2022, 208, 109296.	2.1	33
67	COMPARISON OF PORE FRACTAL CHARACTERISTICS BETWEEN MARINE AND CONTINENTAL SHALES. Fractals, 2018, 26, 1840016.	1.8	32
68	Geological controls on variable gas concentrations: A case study of the northern Gujiao Block, northwestern Qinshui Basin, China. Marine and Petroleum Geology, 2018, 92, 582-596.	1.5	32
69	Dynamic fluid interactions during CO2-ECBM and CO2 sequestration in coal seams. Part 2: CO2-H2O wettability. Fuel, 2020, 279, 118560.	3.4	32
70	Permeability, mineral and pore characteristics of coals response to acid treatment by NMR and QEMSCAN: Insights into acid sensitivity mechanism. Journal of Petroleum Science and Engineering, 2021, 198, 108205.	2.1	32
71	Measurement of adsorption phase densities with respect to different pressure: Potential application for determination of free and adsorbed methane in coalbed methane reservoir. Chemical Engineering Journal, 2022, 446, 137103.	6.6	31
72	Insights into fractures and minerals in subbituminous and bituminous coals by FESEM-EDS and X-ray μ-CT. Fuel, 2019, 237, 977-988.	3.4	30

#	Article	IF	CITATIONS
73	In situ stress distribution and its impact on CBM reservoir properties in the Zhengzhuang area, southern Qinshui Basin, North China. Journal of Natural Gas Science and Engineering, 2019, 61, 83-96.	2.1	30
74	Physical Characterization of the Pore-Fracture System in Coals, Northeastern China. Energy Exploration and Exploitation, 2013, 31, 267-285.	1.1	29
75	Pore structure of selected Chinese coals with heating and pressurization treatments. Science China Earth Sciences, 2014, 57, 1567-1582.	2.3	29
76	Interactions and exchange of CO2 and H2O in coals: an investigation by low-field NMR relaxation. Scientific Reports, 2016, 6, 19919.	1.6	29
77	A Novel Method for Gas–Water Relative Permeability Measurement of Coal Using NMR Relaxation. Transport in Porous Media, 2018, 124, 73-90.	1.2	28
78	Effect of coalification jumps on petrophysical properties of various metamorphic coals from different coalfields in China. Journal of Natural Gas Science and Engineering, 2018, 60, 63-76.	2.1	28
79	The impacts of flow velocity on permeability and porosity of coals by core flooding and nuclear magnetic resonance: Implications for coalbed methane production. Journal of Petroleum Science and Engineering, 2018, 171, 938-950.	2.1	28
80	Critical tectonic events and their geological controls on gas generation, migration, and accumulation in the Weibei coalbed methane field, southeast Ordos basin. Journal of Natural Gas Science and Engineering, 2015, 27, 1367-1380.	2.1	26
81	Application of seismic curvature attributes in the delineation of coal texture and deformation in Zhengzhuang field, southern Qinshui Basin. AAPG Bulletin, 2020, 104, 1143-1166.	0.7	26
82	Effects of the coalification jump on the petrophysical properties of lignite, subbituminous and high-volatile bituminous coals. Fuel, 2017, 199, 219-228.	3.4	25
83	Effects of water saturation on P-wave propagation in fractured coals: An experimental perspective. Journal of Applied Geophysics, 2017, 144, 94-103.	0.9	25
84	Petrophysics characteristics of coalbed methane reservoir: A comprehensive review. Frontiers of Earth Science, 2020, , 1.	0.9	25
85	Effects of natural micro-fracture morphology, temperature and pressure on fluid flow in coals through fractal theory combined with lattice Boltzmann method. Fuel, 2021, 286, 119468.	3.4	24
86	Constraining coalbed methane reservoir petrophysical and mechanical properties through a new coal structure index in the southern Qinshui Basin, northern China: Implications for hydraulic fracturing. AAPG Bulletin, 2020, 104, 1817-1842.	0.7	23
87	Experimental Study of the Effective Stress Coefficient for Coal Anisotropic Permeability. Energy & Fuels, 2020, 34, 5856-5867.	2.5	23
88	Behavior and mechanism of water imbibition and its influence on gas permeability during hydro-fracturing of a coalbed methane reservoir. Journal of Petroleum Science and Engineering, 2022, 208, 109745.	2.1	23
89	Partial Coal Pyrolysis and Its Implication To Enhance Coalbed Methane Recovery: A Simulation Study. Energy & Fuels, 2017, 31, 4895-4903.	2.5	22
90	Variation of Petrophysical Properties and Adsorption Capacity in Different Rank Coals: An Experimental Study of Coals from the Junggar, Ordos and Qinshui Basins in China. Energies, 2019, 12, 986.	1.6	22

DAMENG LIU

#	Article	IF	CITATIONS
91	Quantitative characterization of multiphase methane in coals using the NMR relaxation method. Journal of Petroleum Science and Engineering, 2021, 198, 108148.	2.1	22
92	AFM measurement of roughness, adhesive force and wettability in various rank coal samples from Qinshui and Junggar basin, China. Fuel, 2022, 317, 123556.	3.4	22
93	Structural compartmentalization and its relationships with gas accumulation and gas production in the Zhengzhuang Field, southern Qinshui Basin. International Journal of Coal Geology, 2022, 259, 104055.	1.9	22
94	Comparative study on CO2 corrosion behavior of N80, P110, X52 and 13Cr pipe lines in simulated stratum water. Science China Technological Sciences, 2010, 53, 2342-2349.	2.0	20
95	A Mercury Intrusion Porosimetry Method for Methane Diffusivity and Permeability Evaluation in Coals: A Comparative Analysis. Applied Sciences (Switzerland), 2018, 8, 860.	1.3	20
96	Dynamic Fluid Interactions during CO ₂ -Enhanced Coalbed Methane and CO ₂ Sequestration in Coal Seams. Part 1: CO ₂ –CH ₄ Interactions. Energy & Fuels, 2020, 34, 8274-8282.	2.5	20
97	Seasonal variations of atmospheric heterocyclic aromatic amines in Beijing, China. Atmospheric Research, 2013, 120-121, 287-297.	1.8	18
98	Comparison of Three Key Marine Shale Reservoirs in the Southeastern Margin of the Sichuan Basin, SW China. Minerals (Basel, Switzerland), 2017, 7, 179.	0.8	18
99	Carbon isotopic characteristics of CH4 and its significance to the gas performance of coal reservoirs in the Zhengzhuang area, Southern Qinshui Basin, North China. Journal of Natural Gas Science and Engineering, 2018, 58, 135-151.	2.1	18
100	Methane adsorption constrained by pore structure in highâ€rank coals using <scp>FESEM</scp> , <scp> CO</scp> ₂ adsorption, and <scp>NMRC</scp> techniques. Energy Science and Engineering, 2019, 7, 255-271.	1.9	18
101	Pore Structure and Compressibility Characteristics of Heat-Treated Coals by N ₂ Adsorption/Desorption and Mercury Intrusion Porosimetry. Energy & Fuels, 2020, 34, 3173-3187.	2.5	18
102	Review on Applications of X-ray Computed Tomography for Coal Characterization: Recent Progress and Perspectives. Energy & amp; Fuels, 2022, 36, 6659-6674.	2.5	17
103	Distribution and source apportionment of Polycyclic aromatic hydrocarbons from atmospheric particulate matter PM2.5 in Beijing. Advances in Atmospheric Sciences, 2008, 25, 297-305.	1.9	16
104	Evaluation and Modeling of the CO ₂ Permeability Variation by Coupling Effective Pore Size Evolution in Anthracite Coal. Energy & Fuels, 2015, 29, 717-723.	2.5	16
105	Fracture permeability evaluation of a coal reservoir using geophysical logging: A case study in the Zhengzhuang area, southern Qinshui Basin. Energy Exploration and Exploitation, 2016, 34, 378-399.	1.1	15
106	Insights into fractal characteristics of pores in different rank coals by nuclear magnetic resonance (NMR). Arabian Journal of Geosciences, 2018, 11, 1.	0.6	15
107	Fault Development Characteristics and Their Effects on Current Gas Content and Productivity of No. 3 Coal Seam in the Zhengzhuang Field, Southern Qinshui Basin, North China. Energy & Fuels, 2021, 35, 2268-2281.	2.5	15
108	Geological Factors and Reservoir Properties Affecting the Gas Content of Coal Seams in the Gujiao Area, Northwest Qinshui Basin, China. Energies, 2018, 11, 1044.	1.6	14

#	Article	IF	CITATIONS
109	Investigation on the Methane Adsorption Capacity in Coals: Considerations from Nanopores by Multifractal Analysis. Energy & Fuels, 2021, 35, 6633-6643.	2.5	14
110	Gas Content Evaluation of Coalbed Methane Reservoir in the Fukang Area of Southern Junggar Basin, Northwest China by Multiple Geophysical Logging Methods. Energies, 2018, 11, 1867.	1.6	13
111	Pore Structure of Coals by Mercury Intrusion, N2 Adsorption and NMR: A Comparative Study. Applied Sciences (Switzerland), 2019, 9, 1680.	1.3	13
112	Evaluation of multistage characteristics for coalbed methane desorption-diffusion and their geological controls: A case study of the northern Gujiao Block of Qinshui Basin, China. Journal of Petroleum Science and Engineering, 2021, 204, 108704.	2.1	13
113	A multifractal-based method for determination NMR dual T2 cutoffs in coals. Journal of Petroleum Science and Engineering, 2022, 214, 110488.	2.1	13
114	An analytical model for coalbed methane transport through nanopores coupling multiple flow regimes. Journal of Natural Gas Science and Engineering, 2020, 82, 103500.	2.1	12
115	Methane Adsorption Interpreting with Adsorption Potential and Its Controlling Factors in Various Rank Coals. Processes, 2020, 8, 390.	1.3	12
116	ORGANIC PETROLOGY OF POTENTIAL SOURCE ROCKS IN THE TARIM BASIN, NW CHINA. Journal of Petroleum Geology, 2003, 26, 105-124.	0.9	11
117	DLVO-Based Analyses of the Water Vapor Adsorption and Condensation in Hydrophilic Nanopores of Low-Rank Coal. Energy & Fuels, 2021, 35, 11920-11929.	2.5	11
118	Gas transport and diffusion coefficients in a coupling coal system of matrix and nano-fracture: A molecular simulation study. Journal of Natural Gas Science and Engineering, 2022, 99, 104407.	2.1	11
119	A Novel Approach to Obtain Fractal Dimension in Coals by LFNMR: Insights from the T2 Peak and T2 Geometric Mean. Journal of Energy Engineering - ASCE, 2022, 148, .	1.0	8
120	Determination of the degree of coal deformation and its effects on gas production in the southern Qinshui Basin, North China. Journal of Petroleum Science and Engineering, 2022, 216, 110746.	2.1	8
121	AFM characterization of physical properties in coal adsorbed with different cations induced by electric pulse fracturing. Fuel, 2022, 327, 125247.	3.4	8
122	Evaluation of the coal reservoir permeability using well logging data and its application in the Weibei coalbed methane field, southeast Ordos basin, China. Arabian Journal of Geosciences, 2015, 8, 5449-5458.	0.6	7
123	Petrographic Controls on Pore and Fissure Characteristics of Coals from the Southern Junggar Coalfield, Northwest China. Energies, 2018, 11, 1556.	1.6	7
124	Evaluation of Methane Dynamic Adsorption–Diffusion Process in Coals by a Low-Field NMR Method. Energy & Fuels, 2020, 34, 16119-16131.	2.5	6
125	Fracturing curve and its corresponding gas productivity of coalbed methane wells in the Zhengzhuang block, southern Qinshui Basin, North China. Energy Exploration and Exploitation, 2020, 38, 1387-1408.	1.1	6
126	Fluid Performance in Coal Reservoirs: A Comprehensive Review. Geofluids, 2021, 2021, 1-33.	0.3	6

#	Article	IF	CITATIONS
127	Pore-Fractures of Coalbed Methane Reservoir Restricted by Coal Facies in Sangjiang-Muling Coal-Bearing Basins, Northeast China. Energies, 2020, 13, 1196.	1.6	5
128	Hydrodynamic and Geostress Controls on CBM Enrichment in the Anze Block, Southern Qinshui Basin, North China. Geofluids, 2022, 2022, 1-14.	0.3	5
129	How Does CO ₂ Adsorption Alter Coal Wettability? Implications for CO ₂ Geoâ€Sequestration. Journal of Geophysical Research: Solid Earth, 2022, 127, .	1.4	5
130	Interference mechanism in coalbed methane wells and impacts on infill adjustment for existing well patterns. Energy Reports, 2022, 8, 8675-8689.	2.5	5
131	Mineral Characteristics of Low-Rank Coal and the Effects on the Micro- and Nanoscale Pore-Fractures: A Case Study from the Zhundong Coalfield, Northwest China. Journal of Nanoscience and Nanotechnology, 2021, 21, 460-471.	0.9	4
132	Dual Compressibility Characteristics of Lignite, Subbituminous, and High-Volatile Bituminous Coals: A New Insight into Permeability. Transport in Porous Media, 2021, 136, 295-317.	1.2	4
133	Geological factors on gas entrapment mechanism and prediction of coalbed methane of the no. 6 coal seam in the Jungar coalfield, northeast Ordos Basin, China. International Journal of Oil, Gas and Coal Technology, 2014, 8, 449.	0.1	3
134	A Study on the Heterogeneity Characteristics of Geological Controls on Coalbed Methane Accumulation in Gujiao Coalbed Methane Field, Xishan Coalfield, China. Geofluids, 2021, 2021, 1-20.	0.3	3
135	P-wave and S-wave response of coal rock containing gas-water with different saturation: an experimental perspective. Frontiers of Earth Science, 2023, 17, 100-108.	0.9	3
136	Evaluation of the Coalbed Methane Potential by a GIS-Based Fuzzy AHP Model. , 2009, , .		2
137	Prediction of YoungModulus of coal using artificial neural networks in Qinshui Basin, China. Acta Geologica Sinica, 2015, 89, 339-341.	0.8	1
138	A Semianalytical Approach for Production of Oil from Bottom Water Drive Tight Oil Reservoirs with Complex Hydraulic Fractures. Journal of Chemistry, 2019, 2019, 1-8.	0.9	1
139	Experimental study on methane adsorption behaviour of different rank coals under variable temperature and pressure. IOP Conference Series: Earth and Environmental Science, 2019, 360, 012023.	0.2	0