Arthur I Skoultchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/46399/publications.pdf Version: 2024-02-01

Δρτημο Ι δκομιτομι

#	Article	IF	CITATIONS
1	Histone H1 loss drives lymphoma by disrupting 3D chromatin architecture. Nature, 2021, 589, 299-305.	13.7	155
2	H1 histones control the epigenetic landscape by local chromatin compaction. Nature, 2021, 589, 293-298.	13.7	101
3	The chromatin remodeler Snf2h is essential for oocyte meiotic cell cycle progression. Genes and Development, 2020, 34, 166-178.	2.7	21
4	Single-molecule imaging of transcription dynamics in somatic stem cells. Nature, 2020, 583, 431-436.	13.7	61
5	H1 linker histones silence repetitive elements by promoting both histone H3K9 methylation and chromatin compaction. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 14251-14258.	3.3	57
6	Linker histone H1.2 and H1.4 affect the neutrophil lineage determination. ELife, 2020, 9, .	2.8	12
7	Runx1 promotes murine erythroid progenitor proliferation and inhibits differentiation by preventing Pu.1 downregulation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17841-17847.	3.3	18
8	ISWI ATPase Smarca5 Regulates Differentiation of Thymocytes Undergoing Î ² -Selection. Journal of Immunology, 2019, 202, 3434-3446.	0.4	10
9	Bidirectional Analysis of Cryba4-Crybb1 Nascent Transcription and Nuclear Accumulation of Crybb3 mRNAs in Lens Fibers. , 2019, 60, 234.		11
10	Histone 1 Mutations Drive Lymphomagenesis By Inducing Primitive Stem Cell Functions and Epigenetic Instructions through Profound 3D Re-Organization of the B-Cell Genome. Blood, 2019, 134, 23-23.	0.6	6
11	Emerging roles of linker histones in regulating chromatin structure and function. Nature Reviews Molecular Cell Biology, 2018, 19, 192-206.	16.1	336
12	The ISWI ATPase Smarca5 (Snf2h) Is Required for Proliferation and Differentiation of Hematopoietic Stem and Progenitor Cells. Stem Cells, 2017, 35, 1614-1623.	1.4	37
13	Regulatory functions and chromatin loading dynamics of linker histone H1 during endoreplication in <i>Drosophila</i> . Genes and Development, 2017, 31, 603-616.	2.7	30
14	Independent Biological and Biochemical Functions for Individual Structural Domains of Drosophila Linker Histone H1. Journal of Biological Chemistry, 2016, 291, 15143-15155.	1.6	11
15	BEN domain protein Elba2 can functionally substitute for linker histone H1 in Drosophila in vivo. Scientific Reports, 2016, 6, 34354.	1.6	4
16	Chromatin remodeling enzyme Snf2h regulates embryonic lens differentiation and denucleation. Development (Cambridge), 2016, 143, 1937-1947.	1.2	41
17	Local compartment changes and regulatory landscape alterations in histone H1-depleted cells. Genome Biology, 2015, 16, 289.	3.8	56
18	Proteomic Characterization of the Nucleolar Linker Histone H1 Interaction Network. Journal of Molecular Biology, 2015, 427, 2056-2071.	2.0	42

ARTHUR I SKOULTCHI

#	Article	IF	CITATIONS
19	A Genetic Screen and Transcript Profiling Reveal a Shared Regulatory Program for Drosophila Linker Histone H1 and Chromatin Remodeler CHD1. G3: Genes, Genomes, Genetics, 2015, 5, 677-687.	0.8	4
20	The Role of H1 Linker Histone Subtypes in Preserving the Fidelity of Elaboration of Mesendodermal and Neuroectodermal Lineages during Embryonic Development. PLoS ONE, 2014, 9, e96858.	1.1	6
21	Snf2h-mediated chromatin organization and histone H1 dynamics govern cerebellar morphogenesis and neural maturation. Nature Communications, 2014, 5, 4181.	5.8	71
22	Drosophila linker histone H1 coordinates STAT-dependent organization of heterochromatin and suppresses tumorigenesis caused by hyperactive JAK-STAT signaling. Epigenetics and Chromatin, 2014, 7, 16.	1.8	22
23	A comparative encyclopedia of DNA elements in the mouse genome. Nature, 2014, 515, 355-364.	13.7	1,444
24	Mouse regulatory DNA landscapes reveal global principles of cis-regulatory evolution. Science, 2014, 346, 1007-1012.	6.0	244
25	H1 linker histone promotes epigenetic silencing by regulating both DNA methylation and histone H3 methylation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1708-1713.	3.3	99
26	<i>Drosophila</i> H1 Regulates the Genetic Activity of Heterochromatin by Recruitment of Su(var)3-9. Science, 2013, 340, 78-81.	6.0	93
27	The <i>Rhox</i> Homeobox Gene Cluster Is Imprinted and Selectively Targeted for Regulation by Histone H1 and DNA Methylation. Molecular and Cellular Biology, 2011, 31, 1275-1287.	1.1	38
28	Smarca5 Regulates Ctcf Recruitment to Chromatin, Including to Regulatory Loci Involved In Control of Globin Gene Expression In Erythroleukemia. Blood, 2010, 116, 5159-5159.	0.6	0
29	ISWI Chromatin Remodeling ATPase Smarca5 (Snf2h) Is Required for Murine Erythroid Development and Globin Gene Regulation. Blood, 2010, 116, 2062-2062.	0.6	0
30	MicroRNA Mir-155 and Myb Proto-Oncogene Family Members Cooperate in Pathogenesis of Chronic Lymphocytic Leukemia Blood, 2009, 114, 58-58.	0.6	3
31	PU.1 Relieves Its GATA-1-Mediated Repression near Cebpa and Cbfb During Transdifferentiation of Murine Erythroleukemia - Tool of Inducing Leukemic Blasts to Differentiate Blood, 2009, 114, 547-547.	0.6	5
32	Gata1 Regulates Erythroid Transcription by Cooperating with Chromatin Remodeling Protein Snf2h. Blood, 2008, 112, 4759-4759.	0.6	0
33	Mutual Regulatory Loop between miR-155 and PU.1 Is a Candidate Pathogenesis Factor in CLL Blood, 2007, 110, 1130-1130.	0.6	1
34	ISWI ATPase Snf2h Is Required for Both Heterochromatin and Euchromatin Structure in ES Cells Blood, 2007, 110, 4062-4062.	0.6	0
35	PU.1 Dose-Dependently Induces Granulocyte or Macrophage Commitment by Targeting Lineage Restricted Genes and by Regulating Transcription Factors Egr2, Nab2, Cebpa and Gfi1 Blood, 2007, 110, 661-661.	0.6	2
36	Fog1 and Cebpa Are DNA Targets of GATA-1/PU.1 Antagonism during Leukemia Differentiation Blood, 2007, 110, 4121-4121.	0.6	0

ARTHUR I SKOULTCHI

#	Article	IF	CITATIONS
37	Role of linker histone in chromatin structure and function: H1 stoichiometry and nucleosome repeat length. Chromosome Research, 2006, 14, 17-25.	1.0	396
38	Histone H1 Depletion in Mammals Alters Global Chromatin Structure but Causes Specific Changes in Gene Regulation. Cell, 2005, 123, 1199-1212.	13.5	493
39	Reductions in Linker Histone Levels Are Tolerated in Developing Spermatocytes but Cause Changes in Specific Gene Expression. Journal of Biological Chemistry, 2004, 279, 23525-23535.	1.6	48
40	PU.1 and pRb Bind GATA-1 on DNA and Recruit a Histone H3K9 Methyl Transferase-Containing Complex to Repress the Erythroid Transcription Program Blood, 2004, 104, 1614-1614.	0.6	0
41	H1 Linker Histones Are Essential for Mouse Development and Affect Nucleosome Spacing In Vivo. Molecular and Cellular Biology, 2003, 23, 4559-4572.	1.1	283
42	Individual Somatic H1 Subtypes Are Dispensable for Mouse Development Even in Mice Lacking the H1 0 Replacement Subtype. Molecular and Cellular Biology, 2001, 21, 7933-7943.	1.1	167
43	Manipulating the onset of cell cycle withdrawal in differentiated erythroid cells with cyclin-dependent kinases and inhibitors. Blood, 2000, 96, 2755-2764.	0.6	46
44	Manipulating the onset of cell cycle withdrawal in differentiated erythroid cells with cyclin-dependent kinases and inhibitors. Blood, 2000, 96, 2755-2764.	0.6	13
45	Goosecoid-like (GSCL), a candidate gene for velocardiofacial syndrome, is not essential for normal mouse development. Human Molecular Genetics, 1998, 7, 1841-1849.	1.4	24
46	Deregulated expression of the PU.1 transcription factor blocks murine erythroleukemia cell terminal differentiation. Oncogene, 1997, 14, 123-131.	2.6	91
47	Expression of c-myc changes during differentiation of mouse erythroleukaemia cells. Nature, 1984, 310, 592-594.	13.7	389
48	Inducibility of transferrin receptors on friend erythroleukemic cells. Science, 1977, 197, 559-561.	6.0	97
49	Somatic cell hybrids between Friend erythroleukemia cells and mouse hepatoma cells. Somatic Cell Genetics, 1977, 3, 157-172.	2.7	39