Jaeyoon Kim

List of Publications by Citations

Source: https://exaly.com/author-pdf/4639797/jaeyoon-kim-publications-by-citations.pdf

Version: 2024-04-11

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

14,605 146 49 120 h-index g-index papers citations 6.65 15,868 10.5 155 ext. citations L-index avg, IF ext. papers

#	Paper	IF	Citations
146	Recent Progress in the Synthesis of Porous Carbon Materials. <i>Advanced Materials</i> , 2006 , 18, 2073-2094	24	1748
145	Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 8438-41	16.4	1065
144	Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy. <i>Chemical Society Reviews</i> , 2009 , 38, 372-90	58.5	915
143	Magnetic fluorescent delivery vehicle using uniform mesoporous silica spheres embedded with monodisperse magnetic and semiconductor nanocrystals. <i>Journal of the American Chemical Society</i> , 2006 , 128, 688-9	16.4	797
142	Uniform mesoporous dye-doped silica nanoparticles decorated with multiple magnetite nanocrystals for simultaneous enhanced magnetic resonance imaging, fluorescence imaging, and drug delivery. <i>Journal of the American Chemical Society</i> , 2010 , 132, 552-7	16.4	645
141	Multifunctional mesoporous silica nanocomposite nanoparticles for theranostic applications. <i>Accounts of Chemical Research</i> , 2011 , 44, 893-902	24.3	608
140	Active scaffolds for on-demand drug and cell delivery. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 67-72	11.5	505
139	Designed fabrication of multifunctional magnetic gold nanoshells and their application to magnetic resonance imaging and photothermal therapy. <i>Angewandte Chemie - International Edition</i> , 2006 , 45, 775	5 <u>4-</u> 84	453
138	Designed Fabrication of a Multifunctional Polymer Nanomedical Platform for Simultaneous Cancer-Targeted Imaging and Magnetically Guided Drug Delivery. <i>Advanced Materials</i> , 2008 , 20, 478-483	24	452
137	Mesoporous silica-coated hollow manganese oxide nanoparticles as positive T1 contrast agents for labeling and MRI tracking of adipose-derived mesenchymal stem cells. <i>Journal of the American Chemical Society</i> , 2011 , 133, 2955-61	16.4	446
136	Wrap-bake-peel process for nanostructural transformation from beta-FeOOH nanorods to biocompatible iron oxide nanocapsules. <i>Nature Materials</i> , 2008 , 7, 242-7	27	371
135	Designed Fabrication of Silica-Based Nanostructured Particle Systems for Nanomedicine Applications. <i>Advanced Functional Materials</i> , 2008 , 18, 3745-3758	15.6	355
134	Injectable, spontaneously assembling, inorganic scaffolds modulate immune cells in vivo and increase vaccine efficacy. <i>Nature Biotechnology</i> , 2015 , 33, 64-72	44.5	340
133	A magnetically recyclable nanocomposite catalyst for olefin epoxidation. <i>Angewandte Chemie - International Edition</i> , 2007 , 46, 7039-43	16.4	286
132	Ultrasound-triggered disruption and self-healing of reversibly cross-linked hydrogels for drug delivery and enhanced chemotherapy. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 9762-7	11.5	282
131	Bioinspired Surface Immobilization of Hyaluronic Acid on Monodisperse Magnetite Nanocrystals for Targeted Cancer Imaging. <i>Advanced Materials</i> , 2008 , 20, 4154-4157	24	255
130	A facile approach to enhance antigen response for personalized cancer vaccination. <i>Nature Materials</i> , 2018 , 17, 528-534	27	215

(2018-2006)

129	Generalized fabrication of multifunctional nanoparticle assemblies on silica spheres. <i>Angewandte Chemie - International Edition</i> , 2006 , 45, 4789-93	16.4	215
128	Simple Fabrication of a Highly Sensitive and Fast Glucose Biosensor Using Enzymes Immobilized in Mesocellular Carbon Foam. <i>Advanced Materials</i> , 2005 , 17, 2828-2833	24	186
127	Simple synthesis of hierarchically ordered mesocellular mesoporous silica materials hosting crosslinked enzyme aggregates. <i>Small</i> , 2005 , 1, 744-53	11	179
126	Highly active heterogeneous Fenton catalyst using iron oxide nanoparticles immobilized in alumina coated mesoporous silica. <i>Chemical Communications</i> , 2006 , 463-5	5.8	163
125	Multifunctional silver-embedded magnetic nanoparticles as SERS nanoprobes and their applications. <i>Small</i> , 2010 , 6, 119-25	11	161
124	Designed Fabrication of Multifunctional Magnetic Gold Nanoshells and Their Application to Magnetic Resonance Imaging and Photothermal Therapy. <i>Angewandte Chemie</i> , 2006 , 118, 7918-7922	3.6	142
123	Magnetic nanocomposite spheres decorated with NiO nanoparticles for a magnetically recyclable protein separation system. <i>Advanced Materials</i> , 2010 , 22, 57-60	24	138
122	Preparation of a magnetically switchable bio-electrocatalytic system employing cross-linked enzyme aggregates in magnetic mesocellular carbon foam. <i>Angewandte Chemie - International Edition</i> , 2005 , 44, 7427-32	16.4	128
121	Multifunctional Uniform Nanoparticles Composed of a Magnetite Nanocrystal Core and a Mesoporous Silica Shell for Magnetic Resonance and Fluorescence Imaging and for Drug Delivery. <i>Angewandte Chemie</i> , 2008 , 120, 8566-8569	3.6	127
120	Extra-Large Pore Mesoporous Silica Nanoparticles for Directing in Vivo M2 Macrophage Polarization by Delivering IL-4. <i>Nano Letters</i> , 2017 , 17, 2747-2756	11.5	124
119	Direct synthesis of uniform mesoporous carbons from the carbonization of as-synthesized silica/triblock copolymer nanocomposites. <i>Carbon</i> , 2004 , 42, 2711-2719	10.4	116
118	Targeted delivery of nanoparticles to ischemic muscle for imaging and therapeutic angiogenesis. <i>Nano Letters</i> , 2011 , 11, 694-700	11.5	113
117	A magnetically separable, highly stable enzyme system based on nanocomposites of enzymes and magnetic nanoparticles shipped in hierarchically ordered, mesocellular, mesoporous silica. <i>Small</i> , 2005 , 1, 1203-7	11	99
116	Extra-Large Pore Mesoporous Silica Nanoparticles Enabling Co-Delivery of High Amounts of Protein Antigen and Toll-like Receptor 9 Agonist for Enhanced Cancer Vaccine Efficacy. <i>ACS Central Science</i> , 2018 , 4, 484-492	16.8	98
115	A facile synthesis of bimodal mesoporous silica and its replication for bimodal mesoporous carbon. <i>Chemical Communications</i> , 2003 , 1138-9	5.8	95
114	Smart vaccine delivery based on microneedle arrays decorated with ultra-pH-responsive copolymers for cancer immunotherapy. <i>Biomaterials</i> , 2018 , 185, 13-24	15.6	92
113	Simple Synthesis of Uniform Mesoporous Carbons with Diverse Structures from Mesostructured Polymer/Silica Nanocomposites. <i>Chemistry of Materials</i> , 2004 , 16, 3323-3330	9.6	89
112	Enhanced Cancer Vaccination by In Situ Nanomicelle-Generating Dissolving Microneedles. <i>ACS Nano</i> , 2018 , 12, 9702-9713	16.7	88

111	A Magnetically Recyclable Nanocomposite Catalyst for Olefin Epoxidation. <i>Angewandte Chemie</i> , 2007 , 119, 7169-7173	3.6	81
110	Self-Position of Au NPs in Perovskite Solar Cells: Optical and Electrical Contribution. <i>ACS Applied Materials & M</i>	9.5	77
109	Multifunctional capsule-in-capsules for immunoprotection and trimodal imaging. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 2317-21	16.4	74
108	Mesoporous Silica as a Versatile Platform for Cancer Immunotherapy. <i>Advanced Materials</i> , 2019 , 31, e1	8 <u>03</u> 953	3 72
107	Magnetic mesoporous materials for removal of environmental wastes. <i>Journal of Hazardous Materials</i> , 2011 , 192, 1140-7	12.8	71
106	Magnetically separable carbon nanocomposite catalysts for efficient nitroarene reduction and Suzuki reactions. <i>Applied Catalysis A: General</i> , 2014 , 476, 133-139	5.1	67
105	The effect of surface modification of mesoporous silica micro-rod scaffold on immune cell activation and infiltration. <i>Biomaterials</i> , 2016 , 83, 249-56	15.6	65
104	Generalized Fabrication of Multifunctional Nanoparticle Assemblies on Silica Spheres. <i>Angewandte Chemie</i> , 2006 , 118, 4907-4911	3.6	59
103	A Biodegradation Study of SBA-15 Microparticles in Simulated Body Fluid and in Vivo. <i>Langmuir</i> , 2015 , 31, 6457-62	4	55
102	In Vivo Modulation of Dendritic Cells by Engineered Materials: Towards New Cancer Vaccines. <i>Nano Today</i> , 2011 , 6, 466-477	17.9	55
101	Adhesive Hydrogel Patch with Enhanced Strength and Adhesiveness to Skin for Transdermal Drug Delivery. <i>Advanced Functional Materials</i> , 2020 , 30, 2004407	15.6	54
100	Magnetic surface-enhanced Raman spectroscopic (M-SERS) dots for the identification of bronchioalveolar stem cells in normal and lung cancer mice. <i>Biomaterials</i> , 2009 , 30, 3915-25	15.6	53
99	Adipose tissue engineering using injectable, oxidized alginate hydrogels. <i>Tissue Engineering - Part A</i> , 2012 , 18, 737-43	3.9	51
98	Designed fabrication of super-stiff, anisotropic hybrid hydrogels via linear remodeling of polymer networks and subsequent crosslinking. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 1479-1483	7.3	49
97	Therapeutic Contact Lenses with Polymeric Vehicles for Ocular Drug Delivery: A Review. <i>Materials</i> , 2018 , 11,	3.5	49
96	Surface modification with alginate-derived polymers for stable, protein-repellent, long-circulating gold nanoparticles. <i>ACS Nano</i> , 2012 , 6, 4796-805	16.7	48
95	Hydrogel-Based Artificial Muscles: Overview and Recent Progress. <i>Advanced Intelligent Systems</i> , 2020 , 2, 1900135	6	47
94	Anisotropic Hybrid Hydrogels with Superior Mechanical Properties Reminiscent of Tendons or Ligaments. <i>Advanced Functional Materials</i> , 2019 , 29, 1904342	15.6	46

93	Chitosan Microgels Embedded with Catalase Nanozyme-Loaded Mesocellular Silica Foam for Glucose-Responsive Drug Delivery. <i>ACS Biomaterials Science and Engineering</i> , 2017 , 3, 572-578	5.5	45	
92	Magnetically-separable and highly-stable enzyme system based on crosslinked enzyme aggregates shipped in magnetite-coated mesoporous silica. <i>Journal of Materials Chemistry</i> , 2009 , 19, 7864		43	
91	Heterogeneous asymmetric Henry reaction using a chiral bis(oxazoline)-copper complex immobilized on magnetically separable mesocellular mesoporous silica support. <i>Tetrahedron: Asymmetry</i> , 2010 , 21, 285-291		43	
90	Sea urchin shaped carbon nanostructured materials: carbon nanotubes immobilized on hollow carbon spheres. <i>Journal of Materials Chemistry</i> , 2006 , 16, 2984		43	
89	Functional mesoporous silica nanoparticles for bio-imaging applications. <i>Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology</i> , 2019 , 11, e1515	9.2	43	
88	Degradation-regulated architecture of injectable smart hydrogels enhances humoral immune response and potentiates antitumor activity in human lung carcinoma. <i>Biomaterials</i> , 2020 , 230, 119599	15.6	42	
87	Supertough Hybrid Hydrogels Consisting of a Polymer Double-Network and Mesoporous Silica Microrods for Mechanically Stimulated On-Demand Drug Delivery. <i>Advanced Functional Materials</i> , 2017 , 27, 1703826	15.6	40	
86	Injectable dual-scale mesoporous silica cancer vaccine enabling efficient delivery of antigen/adjuvant-loaded nanoparticles to dendritic cells recruited in local macroporous scaffold. <i>Biomaterials</i> , 2020 , 239, 119859	15.6	36	
85	Microfluidic fabrication of photo-responsive hydrogel capsules. <i>Chemical Communications</i> , 2013 , 49, 18	6 5.8	36	
84	Highly interdigitated and porous architected ternary composite of SnS2, g-C3N4, and reduced graphene oxide (rGO) as high performance lithium ion battery anodes. <i>RSC Advances</i> , 2017 , 7, 3125-313	35 ^{3.7}	35	
83	Effect of pore structure of macroporous poly(lactide-co-glycolide) scaffolds on the in vivo enrichment of dendritic cells. <i>ACS Applied Materials & amp; Interfaces</i> , 2014 , 6, 8505-12	9.5	33	
82	Asymmetric functionalization of colloidal dimer particles with gold nanoparticles. <i>Chemical Communications</i> , 2012 , 48, 9056-8	5.8	33	
81	Modularly engineered injectable hybrid hydrogels based on protein-polymer network as potent immunologic adjuvant in vivo. <i>Biomaterials</i> , 2019 , 195, 100-110	15.6	33	
80	Therapeutic Contact Lens for Scavenging Excessive Reactive Oxygen Species on the Ocular Surface. <i>ACS Nano</i> , 2020 , 14, 2483-2496	16.7	32	
79	Colloidal Mesoporous Silica Nanoparticles as Strong Adhesives for Hydrogels and Biological Tissues. <i>ACS Applied Materials & Acs Applied & Acs A</i>	9.5	32	
78	Ultra-fine SnO2 nanoparticles doubly embedded in amorphous carbon and reduced graphene oxide (rGO) for superior lithium storage. <i>Electrochimica Acta</i> , 2017 , 224, 201-210	6.7	31	
77	Cell-friendly inverse opal-like hydrogels for a spatially separated co-culture system. <i>Macromolecular Rapid Communications</i> , 2014 , 35, 1578-86	4.8	31	
76	Extreme properties of double networked ionogel electrolytes for flexible and durable energy storage devices. <i>Energy Storage Materials</i> , 2019 , 19, 197-205	19.4	30	

75	Hollow Mesoporous Silica Nanoparticles with Extra-Large Mesopores for Enhanced Cancer Vaccine. <i>ACS Applied Materials & Distributed & Dist</i>	9.5	27
74	Mesoporous silica-coated luminescent Eu3+ doped GdVO4 nanoparticles for multimodal imaging and drug delivery. <i>RSC Advances</i> , 2014 , 4, 45687-45695	3.7	26
73	Carbohydrate-Functionalized rGO as an Effective Cancer Vaccine for Stimulating Antigen-Specific Cytotoxic T Cells and Inhibiting Tumor Growth. <i>Chemistry of Materials</i> , 2017 , 29, 6883-6892	9.6	26
72	Synthesis of hierarchical linearly assembled graphitic carbon nanoparticles via catalytic graphitization in SBA-15. <i>Carbon</i> , 2014 , 75, 95-103	10.4	26
71	Properties of immature and mature dendritic cells: phenotype, morphology, phagocytosis, and migration <i>RSC Advances</i> , 2019 , 9, 11230-11238	3.7	25
70	Ultrastable-Stealth Large Gold Nanoparticles with DNA Directed Biological Functionality. <i>Langmuir</i> , 2015 , 31, 13773-82	4	25
69	Self-assembled PEGylated albumin nanoparticles (SPAN) as a platform for cancer chemotherapy and imaging. <i>Drug Delivery</i> , 2018 , 25, 1570-1578	7	24
68	Preparation of a Magnetically Switchable Bio-electrocatalytic System Employing Cross-linked Enzyme Aggregates in Magnetic Mesocellular Carbon Foam. <i>Angewandte Chemie</i> , 2005 , 117, 7593-7598	3.6	24
67	Modulating Notch signaling to enhance neovascularization and reperfusion in diabetic mice. <i>Biomaterials</i> , 2010 , 31, 9048-56	15.6	23
66	Mesoporous Silica Nanoparticles Doped with Gold Nanoparticles for Combined Cancer Immunotherapy and Photothermal Therapy <i>ACS Applied Bio Materials</i> , 2019 , 2, 3630-3638	4.1	22
65	Customized lipid-coated magnetic mesoporous silica nanoparticle doped with ceria nanoparticles for theragnosis of intracerebral hemorrhage. <i>Nano Research</i> , 2018 , 11, 3582-3592	10	22
64	Ceria Nanoparticles Synthesized With Aminocaproic Acid for the Treatment of Subarachnoid Hemorrhage. <i>Stroke</i> , 2018 , 49, 3030-3038	6.7	22
63	Direct Chemical Synthesis of Plasmonic Black Colloidal Gold Superparticles with Broadband Absorption Properties. <i>Nano Letters</i> , 2018 , 18, 5927-5932	11.5	20
62	Injectable Macroporous Ferrogel Microbeads with a High Structural Stability for Magnetically Actuated Drug Delivery. <i>ACS Applied Materials & Drug Delivery</i> . <i>ACS Applied Materials & Drug Delivery</i> . <i>ACS Applied Materials & Drug Delivery</i> .	9.5	19
61	Bioadhesive Nanoaggregates Based on Polyaspartamide-g-C18/DOPA for Wound Healing. <i>Biomacromolecules</i> , 2017 , 18, 2402-2409	6.9	19
60	High performance immunoassay using immobilized enzyme in nanoporous carbon. <i>Analyst, The</i> , 2009 , 134, 926-32	5	19
59	Synthesis of carbon tubes with mesoporous wall structure using designed silica tubes as templates. <i>Chemical Communications</i> , 2003 , 652-3	5.8	19
58	Mesocellular polymer foams with unprecedented uniform large mesopores and high surface areas. <i>Chemical Communications</i> , 2004 , 562-3	5.8	18

(2015-2014)

57	Multi-lineage MSC differentiation via engineered morphogen fields. <i>Journal of Dental Research</i> , 2014 , 93, 1250-7	8.1	17
56	Enhanced Cancer DNA Vaccine Direct Transfection to Host Dendritic Cells Recruited in Injectable Scaffolds. <i>ACS Nano</i> , 2020 , 14, 11623-11636	16.7	15
55	Synthesis of high-quality carbon nanotubes by using monodisperse spherical mesoporous silica encapsulating iron oxide nanoparticles. <i>Korean Journal of Chemical Engineering</i> , 2019 , 36, 157-165	2.8	15
54	Adhesive and self-healing soft gel based on metal-coordinated imidazole-containing polyaspartamide. <i>Colloid and Polymer Science</i> , 2017 , 295, 655-664	2.4	14
53	Polyaspartamide-based graft copolymers encapsulating iron oxide nanoparticles for imaging and fluorescence labelling of immune cells. <i>Biomaterials Science</i> , 2017 , 5, 305-312	7.4	14
52	A 3D Macroporous Alginate Graphene Scaffold with an Extremely Slow Release of a Loaded Cargo for In Situ Long-Term Activation of Dendritic Cells. <i>Advanced Healthcare Materials</i> , 2019 , 8, e1800571	10.1	14
51	Recent Progress in Autocatalytic Ceria Nanoparticles-Based Translational Research on Brain Diseases. <i>ACS Applied Nano Materials</i> , 2020 , 3, 1043-1062	5.6	14
50	A Hydrogel-Film Casting to Fabricate Platelet-Reinforced Polymer Composite Films Exhibiting Superior Mechanical Properties. <i>Small</i> , 2018 , 14, e1801042	11	14
49	Ceria Nanoparticles Fabricated with 6-Aminohexanoic Acid that Overcome Systemic Inflammatory Response Syndrome. <i>Advanced Healthcare Materials</i> , 2019 , 8, e1801548	10.1	13
48	Three-Dimensional Macroporous Alginate Scaffolds Embedded with Akaganeite Nanorods for the Filter-Based High-Speed Preparation of Arsenic-Free Drinking Water. <i>ACS Applied Nano Materials</i> , 2018 , 1, 1940-1948	5.6	13
47	Size-controlled synthesis of uniform akaganeite nanorods and their encapsulation in alginate microbeads for arsenic removal. <i>RSC Advances</i> , 2014 , 4, 21777-21781	3.7	12
46	Mechanically Enhanced Hierarchically Porous Scaffold Composed of Mesoporous Silica for Host Immune Cell Recruitment. <i>Advanced Healthcare Materials</i> , 2017 , 6, 1601160	10.1	11
45	Bioinspired Design and Fabrication of Polymer Composite Films Consisting of a Strong and Stiff Organic Matrix and Microsized Inorganic Platelets. <i>ACS Nano</i> , 2019 , 13, 2773-2785	16.7	11
44	Hierarchically Porous Composite Scaffold Composed of SBA-15 Microrods and Reduced Graphene Oxide Functionalized with Cyclodextrin for Water Purification. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 15764-15772	9.5	11
43	Tailoring dispersion and aggregation of Au nanoparticles in the BHJ layer of polymer solar cells: plasmon effects versus electrical effects. <i>ChemSusChem</i> , 2014 , 7, 3452-8	8.3	11
42	CO2-responsive swelling behavior and metal-ion adsorption properties in novel histamine-conjugated polyaspartamide hydrogel. <i>Journal of Applied Polymer Science</i> , 2016 , 133, n/a-n/a	2.9	10
41	Biomimetic Nanomaterial Strategies for Virus Targeting: Antiviral Therapies and Vaccines. <i>Advanced Functional Materials</i> , 2021 , 31, 2008352	15.6	9
40	Controlled Remodeling of Hydrogel Networks and Subsequent Crosslinking: A Strategy for Preparation of Alginate Hydrogels with Ultrahigh Density and Enhanced Mechanical Properties. <i>Macromolecular Chemistry and Physics</i> , 2015 , 216, 914-921	2.6	8

39	Multifunctional Capsule-in-Capsules for Immunoprotection and Trimodal Imaging. <i>Angewandte Chemie</i> , 2011 , 123, 2365-2369	3.6	8
38	Facile, fine post-tuning of the longitudinal absorption wavelengths of pre-synthesized gold nanorods by introducing sulfide additives. <i>RSC Advances</i> , 2015 , 5, 52459-52465	3.7	7
37	Dental Hetero-Graft Materials with Nano Hydroxyapatite Surface Treatment. <i>Journal of Nanoscience and Nanotechnology</i> , 2015 , 15, 7942-9	1.3	7
36	Hydrophobicity-enhanced adhesion of novel biomimetic biocompatible polyaspartamide derivative glues. <i>Polymer International</i> , 2018 , 67, 557-565	3.3	7
35	Synthesis of new nanostructured carbon materials using silica nanostructured templates by Korean research groups. <i>International Journal of Nanotechnology</i> , 2006 , 3, 253	1.5	7
34	Anisotropic Hydrogels with a Multiscale Hierarchical Structure Exhibiting High Strength and Toughness for Mimicking Tendons ACS Applied Materials & amp; Interfaces, 2021,	9.5	7
33	Sequential Targeted Delivery of Liposomes to Ischemic Tissues by Controlling Blood Vessel Permeability. <i>ACS Biomaterials Science and Engineering</i> , 2018 , 4, 532-538	5.5	6
32	Recent Strategies for Strengthening and Stiffening Tough Hydrogels. <i>Advanced NanoBiomed Research</i> , 2021 , 1, 2100026	О	6
31	Simultaneous delivery of DNA vaccine and hydrophobic adjuvant using reducible polyethylenimine-functionalized graphene oxide for activation of dendritic cells. <i>Journal of Industrial and Engineering Chemistry</i> , 2019 , 80, 870-876	6.3	6
30	On-Demand Macroscale Delivery System Based on a Macroporous Cryogel with a High Drug Loading Capacity for Enhanced Cancer Therapy. <i>ACS Biomaterials Science and Engineering</i> , 2018 , 4, 3498	s-3 5 05	6
29	Fabrication of cell-benign inverse opal hydrogels for three-dimensional cell culture. <i>Journal of Colloid and Interface Science</i> , 2017 , 494, 389-396	9.3	5
28	Scalable synthesis of carbon-embedded ordered macroporous titania spheres with structural colors. <i>Korean Journal of Chemical Engineering</i> , 2018 , 35, 2138-2144	2.8	5
27	Asymmetric nanoparticle assembly via simple mechanical pressing using relative hardness of materials. <i>Materials Research Bulletin</i> , 2015 , 70, 424-429	5.1	5
26	Encapsulation of superparamagnetic iron oxide nanoparticles with polyaspartamide biopolymer for hyperthermia therapy. <i>European Polymer Journal</i> , 2020 , 122, 109396	5.2	5
25	Polyaspartamide Functionalized Catechol-Based Hydrogels Embedded with Silver Nanoparticles for Antimicrobial Properties. <i>Polymers</i> , 2018 , 10,	4.5	5
24	Stabilized polymeric nanoparticle from amphiphilic mPEG-b-polyaspartamides containing dlick functional groups. <i>International Journal of Polymeric Materials and Polymeric Biomaterials</i> , 2017 , 66, 798	3-804	4
23	In Situ Magnetic Alignment and Cross-Linking of Injectable Microparticles into Centimeter-Scale Fibers for Efficient Myoblast Alignment and in Vivo Fiber Formation. <i>Chemistry of Materials</i> , 2019 , 31, 5181-5189	9.6	4
22	Nanozyme-Based Enhanced Cancer Immunotherapy <i>Tissue Engineering and Regenerative Medicine</i> , 2022 , 1	4.5	4

21	Salt-assisted synthesis of mesostructured cellular foams consisting of mall primary particles with enhanced hydrothermal stability. <i>Microporous and Mesoporous Materials</i> , 2015 , 212, 66-72	5.3	3
20	Magnetically-Programmable Cylindrical Microparticles by Facile Reaping Method. <i>Macromolecular Research</i> , 2018 , 26, 1108-1114	1.9	3
19	Durable tetra-scale superhydrophobic coatings with virus-like nanoparticles for oilwater separations. <i>Applied Surface Science</i> , 2021 , 570, 151088	6.7	3
18	Iron Oxide@Polypyrrole CoreBhell Nanoparticles as the Platform for Photothermal Agent and Electrochemical Biosensor. <i>Journal of Nanoscience and Nanotechnology</i> , 2016 , 16, 6942-6948	1.3	2
17	Inside Cover: Multifunctional Uniform Nanoparticles Composed of a Magnetite Nanocrystal Core and a Mesoporous Silica Shell for Magnetic Resonance and Fluorescence Imaging and for Drug Delivery (Angew. Chem. Int. Ed. 44/2008). <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 8322-832	16.4 22	2
16	Innentitelbild: Multifunctional Uniform Nanoparticles Composed of a Magnetite Nanocrystal Core and a Mesoporous Silica Shell for Magnetic Resonance and Fluorescence Imaging and for Drug Delivery (Angew. Chem. 44/2008). <i>Angewandte Chemie</i> , 2008 , 120, 8446-8446	3.6	2
15	Hydrogel Patch: Adhesive Hydrogel Patch with Enhanced Strength and Adhesiveness to Skin for Transdermal Drug Delivery (Adv. Funct. Mater. 42/2020). <i>Advanced Functional Materials</i> , 2020 , 30, 20702	2 85 .6	2
14	Bioinspired Structural Composite Hydrogels with a Combination of High Strength, Stiffness, and Toughness. <i>Advanced Functional Materials</i> , 2021 , 31, 2101095	15.6	2
13	Alternative Activation of Macrophages through Interleukin-13-Loaded Extra-Large-Pore Mesoporous Silica Nanoparticles Suppresses Experimental Autoimmune Encephalomyelitis. <i>ACS Biomaterials Science and Engineering</i> , 2021 , 7, 4446-4453	5.5	2
12	Effective systemic siRNA delivery using dual-layer protected long-circulating nanohydrogel containing an inorganic core. <i>Biomaterials Science</i> , 2019 , 7, 3297-3306	7.4	1
11	Synthesis of hollow magnetic carbon microbeads using iron oleate@alginate core-shell hydrogels and their application to magnetic separation of organic dye. <i>Korean Journal of Chemical Engineering</i> , 2020 , 37, 875-882	2.8	1
10	Cancer Immunotherapy: Mesoporous Silica as a Versatile Platform for Cancer Immunotherapy (Adv. Mater. 34/2019). <i>Advanced Materials</i> , 2019 , 31, 1970243	24	1
9	Hydrogels: Supertough Hybrid Hydrogels Consisting of a Polymer Double-Network and Mesoporous Silica Microrods for Mechanically Stimulated On-Demand Drug Delivery (Adv. Funct. Mater. 42/2017). <i>Advanced Functional Materials</i> , 2017 , 27,	15.6	1
8	Titelbild: Multifunctional Capsule-in-Capsules for Immunoprotection and Trimodal Imaging (Angew. Chem. 10/2011). <i>Angewandte Chemie</i> , 2011 , 123, 2237-2237	3.6	1
7	Dual-crosslinked hydrogels with metal coordination from novel co-polyaspartamide containing 1,2-dihydroxy and imidazole pendant groups. <i>Journal of Applied Polymer Science</i> , 2021 , 138, 51278	2.9	1
6	Facile Room-Temperature Synthesis of Cerium Carbonate and Cerium Oxide Nano- and Microparticles Using 1,1'-Carbonyldiimidazole and Imidazole in a Nonaqueous Solvent. <i>ACS Omega</i> , 2021 , 6, 26477-26488	3.9	1
5	Nanoparticle-Based Tolerogenic Vaccines for the Treatment of Autoimmune Diseases: A Review. <i>ACS Applied Nano Materials</i> ,	5.6	0
4	Macroporous Scaffolds: A 3D Macroporous Alginate Graphene Scaffold with an Extremely Slow Release of a Loaded Cargo for In Situ Long-Term Activation of Dendritic Cells (Adv. Healthcare Mater. 5/2019). Advanced Healthcare Materials, 2019, 8, 1970016	10.1	

3	Anisotropic Hybrid Hydrogels: Anisotropic Hybrid Hydrogels with Superior Mechanical Properties Reminiscent of Tendons or Ligaments (Adv. Funct. Mater. 38/2019). <i>Advanced Functional Materials</i> , 2019 , 29, 1970260	15.6
2	Cover Image, Volume 11, Issue 1. <i>Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology</i> , 2019 , 11, e1549	9.2
1	Cover Picture: Multifunctional Capsule-in-Capsules for Immunoprotection and Trimodal Imaging (Angew. Chem. Int. Ed. 10/2011). <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 2189-2189	16.4