Jaeyoon Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4639797/publications.pdf

Version: 2024-02-01

		22099	13338
147	17,352	59	130
papers	citations	h-index	g-index
155	155	155	23089
155	155	155	23009
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Recent Progress in the Synthesis of Porous Carbon Materials. Advanced Materials, 2006, 18, 2073-2094.	11.1	1,917
2	Multifunctional Uniform Nanoparticles Composed of a Magnetite Nanocrystal Core and a Mesoporous Silica Shell for Magnetic Resonance and Fluorescence Imaging and for Drug Delivery. Angewandte Chemie - International Edition, 2008, 47, 8438-8441.	7.2	1,135
3	Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy. Chemical Society Reviews, 2009, 38, 372-390.	18.7	981
4	Magnetic Fluorescent Delivery Vehicle Using Uniform Mesoporous Silica Spheres Embedded with Monodisperse Magnetic and Semiconductor Nanocrystals. Journal of the American Chemical Society, 2006, 128, 688-689.	6.6	834
5	Uniform Mesoporous Dye-Doped Silica Nanoparticles Decorated with Multiple Magnetite Nanocrystals for Simultaneous Enhanced Magnetic Resonance Imaging, Fluorescence Imaging, and Drug Delivery. Journal of the American Chemical Society, 2010, 132, 552-557.	6.6	687
6	Multifunctional Mesoporous Silica Nanocomposite Nanoparticles for Theranostic Applications. Accounts of Chemical Research, 2011, 44, 893-902.	7.6	676
7	Active scaffolds for on-demand drug and cell delivery. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 67-72.	3.3	630
8	Mesoporous Silica-Coated Hollow Manganese Oxide Nanoparticles as Positive $\langle i \rangle T \langle i \rangle \langle sub \rangle 1 \langle sub \rangle$ Contrast Agents for Labeling and MRI Tracking of Adipose-Derived Mesenchymal Stem Cells. Journal of the American Chemical Society, 2011, 133, 2955-2961.	6.6	491
9	Designed Fabrication of a Multifunctional Polymer Nanomedical Platform for Simultaneous Cancer― Targeted Imaging and Magnetically Guided Drug Delivery. Advanced Materials, 2008, 20, 478-483.	11.1	476
10	Designed Fabrication of Multifunctional Magnetic Gold Nanoshells and Their Application to Magnetic Resonance Imaging and Photothermal Therapy. Angewandte Chemie - International Edition, 2006, 45, 7754-7758.	7.2	475
11	Injectable, spontaneously assembling, inorganic scaffolds modulate immune cells in vivo and increase vaccine efficacy. Nature Biotechnology, 2015, 33, 64-72.	9.4	436
12	Wrap–bake–peelÂprocessÂforÂnanostructural transformation fromÂβ-FeOOHÂnanorodsÂto biocompatible iron oxide nanocapsules. Nature Materials, 2008, 7, 242-247.	13.3	401
13	Designed Fabrication of Silica-Based Nanostructured Particle Systems for Nanomedicine Applications. Advanced Functional Materials, 2008, 18, 3745-3758.	7.8	382
14	Ultrasound-triggered disruption and self-healing of reversibly cross-linked hydrogels for drug delivery and enhanced chemotherapy. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9762-9767.	3.3	372
15	A facile approach to enhance antigen response for personalized cancer vaccination. Nature Materials, 2018, 17, 528-534.	13.3	313
16	A Magnetically Recyclable Nanocomposite Catalyst for Olefin Epoxidation. Angewandte Chemie - International Edition, 2007, 46, 7039-7043.	7.2	303
17	Bioinspired Surface Immobilization of Hyaluronic Acid on Monodisperse Magnetite Nanocrystals for Targeted Cancer Imaging. Advanced Materials, 2008, 20, 4154-4157.	11.1	274
18	Generalized Fabrication of Multifunctional Nanoparticle Assemblies on Silica Spheres. Angewandte Chemie - International Edition, 2006, 45, 4789-4793.	7.2	227

#	Article	IF	CITATIONS
19	Simple Fabrication of a Highly Sensitive and Fast Glucose Biosensor Using Enzymes Immobilized in Mesocellular Carbon Foam. Advanced Materials, 2005, 17, 2828-2833.	11.1	202
20	Simple Synthesis of Hierarchically Ordered Mesocellular Mesoporous Silica Materials Hosting Crosslinked Enzyme Aggregates. Small, 2005, 1, 744-753.	5.2	184
21	Multifunctional Silverâ€Embedded Magnetic Nanoparticles as SERS Nanoprobes and Their Applications. Small, 2010, 6, 119-125.	5.2	184
22	Highly active heterogeneous Fenton catalyst using iron oxide nanoparticles immobilized in alumina coated mesoporous silica. Chemical Communications, 2006, , 463-465.	2.2	180
23	Extra-Large Pore Mesoporous Silica Nanoparticles for Directing in Vivo M2 Macrophage Polarization by Delivering IL-4. Nano Letters, 2017, 17, 2747-2756.	4.5	173
24	Magnetic Nanocomposite Spheres Decorated with NiO Nanoparticles for a Magnetically Recyclable Protein Separation System. Advanced Materials, 2010, 22, 57-60.	11.1	147
25	Extra-Large Pore Mesoporous Silica Nanoparticles Enabling Co-Delivery of High Amounts of Protein Antigen and Toll-like Receptor 9 Agonist for Enhanced Cancer Vaccine Efficacy. ACS Central Science, 2018, 4, 484-492.	5.3	146
26	Smart vaccine delivery based on microneedle arrays decorated with ultra-pH-responsive copolymers for cancer immunotherapy. Biomaterials, 2018, 185, 13-24.	5.7	142
27	Adhesive Hydrogel Patch with Enhanced Strength and Adhesiveness to Skin for Transdermal Drug Delivery. Advanced Functional Materials, 2020, 30, 2004407.	7.8	142
28	Preparation of a Magnetically Switchable Bio-electrocatalytic System Employing Cross-linked Enzyme Aggregates in Magnetic Mesocellular Carbon Foam. Angewandte Chemie - International Edition, 2005, 44, 7427-7432.	7.2	137
29	Targeted Delivery of Nanoparticles to Ischemic Muscle for Imaging and Therapeutic Angiogenesis. Nano Letters, 2011, 11, 694-700.	4.5	135
30	Direct synthesis of uniform mesoporous carbons from the carbonization of as-synthesized silica/triblock copolymer nanocomposites. Carbon, 2004, 42, 2711-2719.	5.4	134
31	Enhanced Cancer Vaccination by <i>In Situ</i> Nanomicelle-Generating Dissolving Microneedles. ACS Nano, 2018, 12, 9702-9713.	7.3	127
32	Mesoporous Silica as a Versatile Platform for Cancer Immunotherapy. Advanced Materials, 2019, 31, e1803953.	11.1	124
33	Superstrong, superstiff, and conductive alginate hydrogels. Nature Communications, 2022, 13, .	5.8	112
34	A Magnetically Separable, Highly Stable Enzyme System Based on Nanocomposites of Enzymes and Magnetic Nanoparticles Shipped in Hierarchically Ordered, Mesocellular, Mesoporous Silica. Small, 2005, 1, 1203-1207.	5.2	106
35	Hydrogelâ€Based Artificial Muscles: Overview and Recent Progress. Advanced Intelligent Systems, 2020, 2, 1900135.	3.3	103
36	A facile synthesis of bimodal mesoporous silica and its replication for bimodal mesoporous carbonElectronic supplementary information (ESI) available: experimental procedure and Figs. S1–S4. See http://www.rsc.org/suppdata/cc/b3/b301535a/. Chemical Communications, 2003, , 1138-1139.	2.2	100

#	Article	IF	CITATIONS
37	Simple Synthesis of Uniform Mesoporous Carbons with Diverse Structures from Mesostructured Polymer/Silica Nanocomposites. Chemistry of Materials, 2004, 16, 3323-3330.	3.2	94
38	Self-Position of Au NPs in Perovskite Solar Cells: Optical and Electrical Contribution. ACS Applied Materials & Samp; Interfaces, 2016, 8, 449-454.	4.0	91
39	The effect of surface modification of mesoporous silica micro-rod scaffold on immune cell activation and infiltration. Biomaterials, 2016, 83, 249-256.	5.7	85
40	A Magnetically Recyclable Nanocomposite Catalyst for Olefin Epoxidation. Angewandte Chemie, 2007, 119, 7169-7173.	1.6	82
41	Injectable dual-scale mesoporous silica cancer vaccine enabling efficient delivery of antigen/adjuvant-loaded nanoparticles to dendritic cells recruited in local macroporous scaffold. Biomaterials, 2020, 239, 119859.	5.7	82
42	Properties of immature and mature dendritic cells: phenotype, morphology, phagocytosis, and migration. RSC Advances, 2019, 9, 11230-11238.	1.7	81
43	Degradation-regulated architecture of injectable smart hydrogels enhances humoral immune response and potentiates antitumor activity in human lung carcinoma. Biomaterials, 2020, 230, 119599.	5.7	79
44	Magnetic mesoporous materials for removal of environmental wastes. Journal of Hazardous Materials, 2011, 192, 1140-1147.	6.5	78
45	Multifunctional Capsuleâ€inâ€Capsules for Immunoprotection and Trimodal Imaging. Angewandte Chemie - International Edition, 2011, 50, 2317-2321.	7.2	77
46	Functional mesoporous silica nanoparticles for bioâ€imaging applications. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2019, 11, e1515.	3.3	75
47	Anisotropic Hybrid Hydrogels with Superior Mechanical Properties Reminiscent of Tendons or Ligaments. Advanced Functional Materials, 2019, 29, 1904342.	7.8	74
48	Hollow Mesoporous Silica Nanoparticles with Extra-Large Mesopores for Enhanced Cancer Vaccine. ACS Applied Materials & Enterfaces, 2020, 12, 34658-34666.	4.0	74
49	Magnetically separable carbon nanocomposite catalysts for efficient nitroarene reduction and Suzuki reactions. Applied Catalysis A: General, 2014, 476, 133-139.	2.2	73
50	Therapeutic Contact Lenses with Polymeric Vehicles for Ocular Drug Delivery: A Review. Materials, 2018, 11, 1125.	1.3	72
51	A Biodegradation Study of SBA-15 Microparticles in Simulated Body Fluid and <i>in Vivo</i> . Langmuir, 2015, 31, 6457-6462.	1.6	69
52	Therapeutic Contact Lens for Scavenging Excessive Reactive Oxygen Species on the Ocular Surface. ACS Nano, 2020, 14, 2483-2496.	7.3	68
53	In vivo modulation of dendritic cells by engineered materials: Towards new cancer vaccines. Nano Today, 2011, 6, 466-477.	6.2	63
54	Adipose Tissue Engineering Using Injectable, Oxidized Alginate Hydrogels. Tissue Engineering - Part A, 2012, 18, 737-743.	1.6	63

#	Article	IF	CITATIONS
55	Designed fabrication of super-stiff, anisotropic hybrid hydrogels via linear remodeling of polymer networks and subsequent crosslinking. Journal of Materials Chemistry B, 2015, 3, 1479-1483.	2.9	63
56	ROS-Scavenging Therapeutic Hydrogels for Modulation of the Inflammatory Response. ACS Applied Materials & Samp; Interfaces, 2022, 14, 23002-23021.	4.0	63
57	Supertough Hybrid Hydrogels Consisting of a Polymer Doubleâ€Network and Mesoporous Silica Microrods for Mechanically Stimulated Onâ€Demand Drug Delivery. Advanced Functional Materials, 2017, 27, 1703826.	7.8	60
58	Magnetic surface-enhanced Raman spectroscopic (M-SERS) dots for the identification of bronchioalveolar stem cells in normal and lung cancer mice. Biomaterials, 2009, 30, 3915-3925.	5.7	58
59	Chitosan Microgels Embedded with Catalase Nanozyme-Loaded Mesocellular Silica Foam for Glucose-Responsive Drug Delivery. ACS Biomaterials Science and Engineering, 2017, 3, 572-578.	2.6	58
60	Extreme properties of double networked ionogel electrolytes for flexible and durable energy storage devices. Energy Storage Materials, 2019, 19, 197-205.	9.5	54
61	Surface Modification with Alginate-Derived Polymers for Stable, Protein-Repellent, Long-Circulating Gold Nanoparticles. ACS Nano, 2012, 6, 4796-4805.	7.3	53
62	Colloidal Mesoporous Silica Nanoparticles as Strong Adhesives for Hydrogels and Biological Tissues. ACS Applied Materials & Samp; Interfaces, 2017, 9, 31469-31477.	4.0	49
63	Heterogeneous asymmetric Henry reaction using a chiral bis(oxazoline)-copper complex immobilized on magnetically separable mesocellular mesoporous silica support. Tetrahedron: Asymmetry, 2010, 21, 285-291.	1.8	48
64	Sea urchin shaped carbon nanostructured materials: carbon nanotubes immobilized on hollow carbon spheres. Journal of Materials Chemistry, 2006, 16, 2984.	6.7	46
65	Modularly engineered injectable hybrid hydrogels based on protein-polymer network as potent immunologic adjuvant in vivo. Biomaterials, 2019, 195, 100-110.	5.7	45
66	Magnetically-separable and highly-stable enzyme system based on crosslinked enzyme aggregates shipped in magnetite-coated mesoporous silica. Journal of Materials Chemistry, 2009, 19, 7864.	6.7	44
67	Microfluidic fabrication of photo-responsive hydrogel capsules. Chemical Communications, 2013, 49, 1865.	2.2	42
68	Enhanced Cancer DNA Vaccine <i>via</i> Direct Transfection to Host Dendritic Cells Recruited in Injectable Scaffolds. ACS Nano, 2020, 14, 11623-11636.	7.3	40
69	Cellâ€Friendly Inverse Opalâ€Like Hydrogels for a Spatially Separated Coâ€Culture System. Macromolecular Rapid Communications, 2014, 35, 1578-1586.	2.0	38
70	Effect of Pore Structure of Macroporous Poly(Lactide- <i>co</i> -Glycolide) Scaffolds on the <i>in Vivo</i> Enrichment of Dendritic Cells. ACS Applied Materials & Samp; Interfaces, 2014, 6, 8505-8512.	4.0	38
71	Highly interdigitated and porous architected ternary composite of SnS ₂ , g-C ₃ N ₄ , and reduced graphene oxide (rGO) as high performance lithium ion battery anodes. RSC Advances, 2017, 7, 3125-3135.	1.7	37
72	Ceria Nanoparticles Synthesized With Aminocaproic Acid for the Treatment of Subarachnoid Hemorrhage. Stroke, 2018, 49, 3030-3038.	1.0	37

#	Article	IF	CITATIONS
73	Mesoporous Silica Nanoparticles Doped with Gold Nanoparticles for Combined Cancer Immunotherapy and Photothermal Therapy. ACS Applied Bio Materials, 2019, 2, 3630-3638.	2.3	37
74	Asymmetric functionalization of colloidal dimer particles with gold nanoparticles. Chemical Communications, 2012, 48, 9056.	2.2	35
75	Ultra-fine SnO2 nanoparticles doubly embedded in amorphous carbon and reduced graphene oxide (rGO) for superior lithium storage. Electrochimica Acta, 2017, 224, 201-210.	2.6	35
76	Direct Chemical Synthesis of Plasmonic Black Colloidal Gold Superparticles with Broadband Absorption Properties. Nano Letters, 2018, 18, 5927-5932.	4.5	34
77	Recent Strategies for Strengthening and Stiffening Tough Hydrogels. Advanced NanoBiomed Research, 2021, 1, 2100026.	1.7	34
78	Customized lipid-coated magnetic mesoporous silica nanoparticle doped with ceria nanoparticles for theragnosis of intracerebral hemorrhage. Nano Research, 2018, 11, 3582-3592.	5.8	32
79	Mesoporous silica-coated luminescent Eu ³⁺ doped GdVO ₄ nanoparticles for multimodal imaging and drug delivery. RSC Advances, 2014, 4, 45687-45695.	1.7	31
80	Carbohydrate-Functionalized rGO as an Effective Cancer Vaccine for Stimulating Antigen-Specific Cytotoxic T Cells and Inhibiting Tumor Growth. Chemistry of Materials, 2017, 29, 6883-6892.	3.2	30
81	Ultrastable-Stealth Large Gold Nanoparticles with DNA Directed Biological Functionality. Langmuir, 2015, 31, 13773-13782.	1.6	29
82	Injectable Macroporous Ferrogel Microbeads with a High Structural Stability for Magnetically Actuated Drug Delivery. ACS Applied Materials & Interfaces, 2017, 9, 31372-31380.	4.0	29
83	Therapeutic Hydrogel Patch to Treat Atopic Dermatitis by Regulating Oxidative Stress. Nano Letters, 2022, 22, 2038-2047.	4.5	29
84	Synthesis of hierarchical linearly assembled graphitic carbon nanoparticles via catalytic graphitization in SBA-15. Carbon, 2014, 75, 95-103.	5 . 4	28
85	Self-assembled PEGylated albumin nanoparticles (SPAN) as a platform for cancer chemotherapy and imaging. Drug Delivery, 2018, 25, 1570-1578.	2.5	28
86	Ceria Nanoparticles Fabricated with 6â€Aminohexanoic Acid that Overcome Systemic Inflammatory Response Syndrome. Advanced Healthcare Materials, 2019, 8, e1801548.	3.9	28
87	Anisotropic Hydrogels with a Multiscale Hierarchical Structure Exhibiting High Strength and Toughness for Mimicking Tendons. ACS Applied Materials & Samp; Interfaces, 2022, 14, 4479-4489.	4.0	28
88	Modulating Notch signaling to enhance neovascularization and reperfusion in diabetic mice. Biomaterials, 2010, 31, 9048-9056.	5.7	27
89	A 3D Macroporous Alginate Graphene Scaffold with an Extremely Slow Release of a Loaded Cargo for In Situ Longâ€√erm Activation of Dendritic Cells. Advanced Healthcare Materials, 2019, 8, e1800571.	3.9	27
90	Recent Progress in Autocatalytic Ceria Nanoparticles-Based Translational Research on Brain Diseases. ACS Applied Nano Materials, 2020, 3, 1043-1062.	2.4	27

#	Article	IF	CITATIONS
91	Bioinspired Design and Fabrication of Polymer Composite Films Consisting of a Strong and Stiff Organic Matrix and Microsized Inorganic Platelets. ACS Nano, 2019, 13, 2773-2785.	7.3	25
92	Biomimetic Nanomaterial Strategies for Virus Targeting: Antiviral Therapies and Vaccines. Advanced Functional Materials, 2021, 31, 2008352.	7.8	25
93	Multi-lineage MSC Differentiation <i>via</i> Engineered Morphogen Fields. Journal of Dental Research, 2014, 93, 1250-1257.	2.5	24
94	Nanozyme-Based Enhanced Cancer Immunotherapy. Tissue Engineering and Regenerative Medicine, 2022, 19, 237-252.	1.6	24
95	Bioadhesive Nanoaggregates Based on Polyaspartamide- $\langle i \rangle g \langle i \rangle$ -C18/DOPA for Wound Healing. Biomacromolecules, 2017, 18, 2402-2409.	2.6	23
96	Synthesis of high-quality carbon nanotubes by using monodisperse spherical mesoporous silica encapsulating iron oxide nanoparticles. Korean Journal of Chemical Engineering, 2019, 36, 157-165.	1.2	23
97	High performance immunoassay using immobilized enzyme in nanoporous carbon. Analyst, The, 2009, 134, 926.	1.7	22
98	A Hydrogelâ€Film Casting to Fabricate Plateletâ€Reinforced Polymer Composite Films Exhibiting Superior Mechanical Properties. Small, 2018, 14, e1801042.	5.2	22
99	Bioinspired Structural Composite Hydrogels with a Combination of High Strength, Stiffness, and Toughness. Advanced Functional Materials, 2021, 31, 2101095.	7.8	22
100	Synthesis of carbon tubes with mesoporous wall structure using designed silica tubes as templatesElectronic supplementary information (ESI) available: TEM image of a carbon tube showing disordered mesoporous walls. See http://www.rsc.org/suppdata/cc/b2/b212336c/. Chemical Communications, 2003, , 652-653.	2.2	19
101	Three-Dimensional Macroporous Alginate Scaffolds Embedded with Akaganeite Nanorods for the Filter-Based High-Speed Preparation of Arsenic-Free Drinking Water. ACS Applied Nano Materials, 2018, 1, 1940-1948.	2.4	19
102	Mesocellular polymer foams with unprecedented uniform large mesopores and high surface areas Electronic supplementary information (ESI) available: isotherms and corresponding pore size distribution of the MCF silica template and poly(DVB)/MCF silica composite, IR spectrum of mesocellular polymer foam, and TEM image of the MCF silica template. See	2.2	18
103	http://www.rsc.org/suppdata/cc/b3/b310713b/. Chemical Communications, 2004, , 562. Adhesive and self-healing soft gel based on metal-coordinated imidazole-containing polyaspartamide. Colloid and Polymer Science, 2017, 295, 655-664.	1.0	18
104	<scp>CO</scp> ₂ â€responsive swelling behavior and metalâ€ion adsorption properties in novel histamineâ€conjugated polyaspartamide hydrogel. Journal of Applied Polymer Science, 2016, 133, .	1.3	16
105	Polyaspartamide-based graft copolymers encapsulating iron oxide nanoparticles for imaging and fluorescence labelling of immune cells. Biomaterials Science, 2017, 5, 305-312.	2.6	16
106	Simultaneous delivery of DNA vaccine and hydrophobic adjuvant using reducible polyethylenimine-functionalized graphene oxide for activation of dendritic cells. Journal of Industrial and Engineering Chemistry, 2019, 80, 870-876.	2.9	16
107	Size-controlled synthesis of uniform akaganeite nanorods and their encapsulation in alginate microbeads for arsenic removal. RSC Advances, 2014, 4, 21777-21781.	1.7	15
108	Hierarchically Porous Composite Scaffold Composed of SBA-15 Microrods and Reduced Graphene Oxide Functionalized with Cyclodextrin for Water Purification. ACS Applied Materials & Samp; Interfaces, 2019, 11, 15764-15772.	4.0	15

#	Article	IF	CITATIONS
109	Mechanically Enhanced Hierarchically Porous Scaffold Composed of Mesoporous Silica for Host Immune Cell Recruitment. Advanced Healthcare Materials, 2017, 6, 1601160.	3.9	14
110	Encapsulation of superparamagnetic iron oxide nanoparticles with polyaspartamide biopolymer for hyperthermia therapy. European Polymer Journal, 2020, 122, 109396.	2.6	14
111	Hydrophobicityâ€enhanced adhesion of novel biomimetic biocompatible polyaspartamide derivative glues. Polymer International, 2018, 67, 557-565.	1.6	13
112	Tailoring Dispersion and Aggregation of Au Nanoparticles in the BHJ Layer of Polymer Solar Cells: Plasmon Effects versus Electrical Effects. ChemSusChem, 2014, 7, 3452-3458.	3.6	12
113	On-Demand Macroscale Delivery System Based on a Macroporous Cryogel with a High Drug Loading Capacity for Enhanced Cancer Therapy. ACS Biomaterials Science and Engineering, 2018, 4, 3498-3505.	2.6	12
114	Injectable Hydrogel Based on Protein-Polyester Microporous Network as an Implantable Niche for Active Cell Recruitment. Pharmaceutics, 2022, 14, 709.	2.0	11
115	Polyaspartamide Functionalized Catechol-Based Hydrogels Embedded with Silver Nanoparticles for Antimicrobial Properties. Polymers, 2018, 10, 1188.	2.0	10
116	Durable tetra-scale superhydrophobic coatings with virus-like nanoparticles for oil–water separations. Applied Surface Science, 2021, 570, 151088.	3.1	10
117	Synthesis of new nanostructured carbon materials using silica nanostructured templates by Korean research groups. International Journal of Nanotechnology, 2006, 3, 253.	0.1	9
118	Electrochemical Performances of Yttrium Doped Li ₃ V _{2â€"<i>X</i>} Y _{<i>X</i>} (PO ₄) ₃ /C Cathode Material for Lithium Secondary Battery. Journal of Nanoscience and Nanotechnology, 2015, 15, 8042-8047.	0.9	9
119	Controlled Remodeling of Hydrogel Networks and Subsequent Crosslinking: A Strategy for Preparation of Alginate Hydrogels with Ultrahigh Density and Enhanced Mechanical Properties. Macromolecular Chemistry and Physics, 2015, 216, 914-921.	1.1	8
120	Asymmetric nanoparticle assembly via simple mechanical pressing using relative hardness of materials. Materials Research Bulletin, 2015, 70, 424-429.	2.7	7
121	Facile, fine post-tuning of the longitudinal absorption wavelengths of pre-synthesized gold nanorods by introducing sulfide additives. RSC Advances, 2015, 5, 52459-52465.	1.7	7
122	Fabrication of cell-benign inverse opal hydrogels for three-dimensional cell culture. Journal of Colloid and Interface Science, 2017, 494, 389-396.	5.0	7
123	Sequential Targeted Delivery of Liposomes to Ischemic Tissues by Controlling Blood Vessel Permeability. ACS Biomaterials Science and Engineering, 2018, 4, 532-538.	2.6	7
124	Hydrogel Patch: Adhesive Hydrogel Patch with Enhanced Strength and Adhesiveness to Skin for Transdermal Drug Delivery (Adv. Funct. Mater. 42/2020). Advanced Functional Materials, 2020, 30, 2070280.	7.8	7
125	In Situ Magnetic Alignment and Cross-Linking of Injectable Microparticles into Centimeter-Scale Fibers for Efficient Myoblast Alignment and in Vivo Fiber Formation. Chemistry of Materials, 2019, 31, 5181-5189.	3.2	6
126	Dualâ€crosslinked hydrogels with metal coordination from novel coâ€polyaspartamide containing 1,2â€dihydroxy and imidazole pendant groups. Journal of Applied Polymer Science, 2021, 138, 51278.	1.3	6

#	Article	IF	Citations
127	Alternative Activation of Macrophages through Interleukin-13-Loaded Extra-Large-Pore Mesoporous Silica Nanoparticles Suppresses Experimental Autoimmune Encephalomyelitis. ACS Biomaterials Science and Engineering, 2021, 7, 4446-4453.	2.6	6
128	Scalable synthesis of carbon-embedded ordered macroporous titania spheres with structural colors. Korean Journal of Chemical Engineering, 2018, 35, 2138-2144.	1.2	5
129	Facile Room-Temperature Synthesis of Cerium Carbonate and Cerium Oxide Nano- and Microparticles Using 1,1′-Carbonyldiimidazole and Imidazole in a Nonaqueous Solvent. ACS Omega, 2021, 6, 26477-26488.	1.6	5
130	Nanoparticle-based non-viral CRISPR delivery for enhanced immunotherapy. Chemical Communications, 2022, 58, 1860-1870.	2.2	5
131	Inside Cover: Multifunctional Uniform Nanoparticles Composed of a Magnetite Nanocrystal Core and a Mesoporous Silica Shell for Magnetic Resonance and Fluorescence Imaging and for Drug Delivery (Angew. Chem. Int. Ed. 44/2008). Angewandte Chemie - International Edition, 2008, 47, 8322-8322.	7.2	4
132	Iron Oxide@Polypyrrole Core–Shell Nanoparticles as the Platform for Photothermal Agent and Electrochemical Biosensor. Journal of Nanoscience and Nanotechnology, 2016, 16, 6942-6948.	0.9	4
133	Stabilized polymeric nanoparticle from amphiphilic mPEG- <i>b</i> -polyaspartamides containing â€~click' functional groups. International Journal of Polymeric Materials and Polymeric Biomaterials, 2017, 66, 798-804.	1.8	4
134	Nanoparticle-Based Tolerogenic Vaccines for the Treatment of Autoimmune Diseases: A Review. ACS Applied Nano Materials, 0, , .	2.4	4
135	Salt-assisted synthesis of mesostructured cellular foams consisting ofÂsmall primary particles with enhanced hydrothermal stability. Microporous and Mesoporous Materials, 2015, 212, 66-72.	2.2	3
136	Magnetically-Programmable Cylindrical Microparticles by Facile Reaping Method. Macromolecular Research, 2018, 26, 1108-1114.	1.0	3
137	Effective systemic siRNA delivery using dual-layer protected long-circulating nanohydrogel containing an inorganic core. Biomaterials Science, 2019, 7, 3297-3306.	2.6	3
138	Directed Assembly of Magnetic Nanoparticles into Centimeter Scale Wires for a 3D Cell Culture Platform. Chemistry of Materials, 2022, 34, 4437-4445.	3.2	3
139	Innentitelbild: Multifunctional Uniform Nanoparticles Composed of a Magnetite Nanocrystal Core and a Mesoporous Silica Shell for Magnetic Resonance and Fluorescence Imaging and for Drug Delivery (Angew. Chem. 44/2008). Angewandte Chemie, 2008, 120, 8446-8446.	1.6	2
140	Hydrogels: Supertough Hybrid Hydrogels Consisting of a Polymer Doubleâ€Network and Mesoporous Silica Microrods for Mechanically Stimulated Onâ€Demand Drug Delivery (Adv. Funct. Mater. 42/2017). Advanced Functional Materials, 2017, 27, .	7.8	1
141	Cancer Immunotherapy: Mesoporous Silica as a Versatile Platform for Cancer Immunotherapy (Adv.) Tj ETQq1 1 C).784314 i 11.1	rgBT /Overlo
142	Anisotropic Hybrid Hydrogels: Anisotropic Hybrid Hydrogels with Superior Mechanical Properties Reminiscent of Tendons or Ligaments (Adv. Funct. Mater. 38/2019). Advanced Functional Materials, 2019, 29, 1970260.	7.8	1
143	Synthesis of hollow magnetic carbon microbeads using iron oleate@alginate core-shell hydrogels and their application to magnetic separation of organic dye. Korean Journal of Chemical Engineering, 2020, 37, 875-882.	1.2	1
144	Cover Picture: Multifunctional Capsule-in-Capsules for Immunoprotection and Trimodal Imaging (Angew. Chem. Int. Ed. 10/2011). Angewandte Chemie - International Edition, 2011, 50, 2189-2189.	7.2	0

#	Article	IF	CITATIONS
145	Immune Cell Recruitment: Mechanically Enhanced Hierarchically Porous Scaffold Composed of Mesoporous Silica for Host Immune Cell Recruitment (Adv. Healthcare Mater. 8/2017). Advanced Healthcare Materials, 2017, 6, .	3.9	0
146	Cover Image, Volume 11, Issue 1. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2019, 11, e1549.	3.3	0
147	Macroporous Scaffolds: A 3D Macroporous Alginate Graphene Scaffold with an Extremely Slow Release of a Loaded Cargo for In Situ Long-Term Activation of Dendritic Cells (Adv. Healthcare Mater.) Tj ETQq1	1 037%431	4 rgBT /Overl