Jia-Long Fang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4639716/publications.pdf Version: 2024-02-01

LIA-LONG FANG

#	Article	IF	CITATIONS
1	Toxicity of high-molecular-weight polyethylene glycols in Sprague Dawley rats. Toxicology Letters, 2022, 359, 22-30.	0.8	4
2	Flow cytometry analysis of anti-polyethylene glycol antibodies in human plasma. Toxicology Reports, 2021, 8, 148-154.	3.3	21
3	Apoptosis contributes to the cytotoxicity induced by amodiaquine and its major metabolite N-desethylamodiaquine in hepatic cells. Toxicology in Vitro, 2020, 62, 104669.	2.4	4
4	Role of peroxisome proliferator-activated receptor alpha (PPARα) and PPARα-mediated species differences in triclosan-induced liver toxicity. Archives of Toxicology, 2018, 92, 3391-3402.	4.2	19
5	Effects of human sulfotransferases on the cytotoxicity of 12-hydroxynevirapine. Biochemical Pharmacology, 2018, 155, 455-467.	4.4	5
6	Cytochrome P450-mediated metabolism of triclosan attenuates its cytotoxicity in hepatic cells. Archives of Toxicology, 2017, 91, 2405-2423.	4.2	37
7	Absorption and metabolism of triclosan after application to the skin of <scp>B</scp> 6 <scp>C</scp> 3 <scp>F</scp> 1 mice. Environmental Toxicology, 2016, 31, 609-623.	4.0	44
8	Effect of triclosan, triclocarban, 2,2′,4,4′-tetrabromodiphenyl ether, and bisphenol A on the iodide uptake, thyroid peroxidase activity, and expression of genes involved in thyroid hormone synthesis. Toxicology in Vitro, 2016, 32, 310-319.	2.4	89
9	Human Sulfotransferases Enhance the Cytotoxicity of Tolvaptan. Toxicological Sciences, 2016, 150, 27-39.	3.1	12
10	Extracellular signal-regulated kinases 1/2 and Akt contribute to triclosan-stimulated proliferation of JB6 Cl 41-5a cells. Archives of Toxicology, 2015, 89, 1297-1311.	4.2	19
11	Dose–response assessment of the dermal toxicity of triclosan in B6C3F1 mice. Toxicology Research, 2015, 4, 867-877.	2.1	20
12	Mechanisms of tolvaptan-induced toxicity in HepG2 cells. Biochemical Pharmacology, 2015, 95, 324-336.	4.4	29
13	Differential gene expression in human hepatocyte cell lines exposed to the antiretroviral agent zidovudine. Archives of Toxicology, 2014, 88, 609-23.	4.2	9
14	Differential effects of triclosan on the activation of mouse and human peroxisome proliferator-activated receptor alpha. Toxicology Letters, 2014, 231, 17-28.	0.8	20
15	Differential responses of human hepatocytes to the non-nucleoside HIV-1 reverse transcriptase inhibitor nevirapine. Journal of Toxicological Sciences, 2013, 38, 741-752.	1.5	12
16	Role of DNA Repair Pathways in Response to Zidovudine-induced DNA Damage in Immortalized Human Liver THLE2 Cells. International Journal of Biomedical Science, 2013, 9, 18-25.	0.1	7
17	Cytotoxicity and inhibitory effects of low-concentration triclosan on adipogenic differentiation of human mesenchymal stem cells. Toxicology and Applied Pharmacology, 2012, 262, 117-123.	2.8	42
18	Similarities and Differences in the Expression of Drug-Metabolizing Enzymes between Human Hepatic Cell Lines and Primary Human Hepatocytes. Drug Metabolism and Disposition, 2011, 39, 528-538.	3.3	262

JIA-LONG FANG

#	Article	IF	CITATIONS
19	XPC is essential for nucleotide excision repair of zidovudine-induced DNA damage in human hepatoma cells. Toxicology and Applied Pharmacology, 2011, 251, 155-162.	2.8	18
20	Occurrence, Efficacy, Metabolism, and Toxicity of Triclosan. Journal of Environmental Science and Health, Part C: Environmental Carcinogenesis and Ecotoxicology Reviews, 2010, 28, 147-171.	2.9	165
21	Long-Term Exposure to Zidovudine Delays Cell Cycle Progression, Induces Apoptosis, and Decreases Telomerase Activity in Human Hepatocytes. Toxicological Sciences, 2009, 111, 120-130.	3.1	59
22	Interference of cell cycle progression by zidovudine and lamivudine in NIH 3T3 cells. Mutagenesis, 2008, 24, 133-141.	2.6	17