## **Kuen-Feng Chen**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4639327/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Activation of Phosphatidylinositol 3-Kinase/Akt Signaling Pathway Mediates Acquired Resistance to<br>Sorafenib in Hepatocellular Carcinoma Cells. Journal of Pharmacology and Experimental<br>Therapeutics, 2011, 337, 155-161.                                           | 1.3 | 270       |
| 2  | Treatment of Liver Cancer. Cold Spring Harbor Perspectives in Medicine, 2015, 5, a021535.                                                                                                                                                                                 | 2.9 | 241       |
| 3  | 3-Phosphoinositide-Dependent Protein Kinase-1/Akt Signaling Represents a Major<br>Cyclooxygenase-2-Independent Target for Celecoxib in Prostate Cancer Cells. Cancer Research, 2004,<br>64, 1444-1451.                                                                    | 0.4 | 225       |
| 4  | Thiazolidenediones Mediate Apoptosis in Prostate Cancer Cells in Part through Inhibition of Bcl-xL/Bcl-2 Functions Independently of PPARÎ <sup>3</sup> . Cancer Research, 2005, 65, 1561-1569.                                                                            | 0.4 | 206       |
| 5  | Mcl-1-dependent activation of Beclin 1 mediates autophagic cell death induced by sorafenib and SC-59 in hepatocellular carcinoma cells. Cell Death and Disease, 2013, 4, e485-e485.                                                                                       | 2.7 | 175       |
| 6  | Sorafenib Overcomes TRAIL Resistance of Hepatocellular Carcinoma Cells through the Inhibition of STAT3. Clinical Cancer Research, 2010, 16, 5189-5199.                                                                                                                    | 3.2 | 155       |
| 7  | Signal transducer and activator of transcription 3 is a major kinase-independent target of sorafenib in hepatocellular carcinoma. Journal of Hepatology, 2011, 55, 1041-1048.                                                                                             | 1.8 | 149       |
| 8  | CIP2A mediates effects of bortezomib on phospho-Akt and apoptosis in hepatocellular carcinoma cells.<br>Oncogene, 2010, 29, 6257-6266.                                                                                                                                    | 2.6 | 147       |
| 9  | OSU-03012, a Novel Celecoxib Derivative, Induces Reactive Oxygen Species–Related Autophagy in<br>Hepatocellular Carcinoma. Cancer Research, 2008, 68, 9348-9357.                                                                                                          | 0.4 | 131       |
| 10 | Dovitinib Induces Apoptosis and Overcomes Sorafenib Resistance in Hepatocellular Carcinoma<br>through SHP-1–Mediated Inhibition of STAT3. Molecular Cancer Therapeutics, 2012, 11, 452-463.                                                                               | 1.9 | 119       |
| 11 | Peroxisome Proliferator-Activated Receptor Î <sup>3</sup> -Independent Ablation of Cyclin D1 by Thiazolidinediones and Their Derivatives in Breast Cancer Cells. Molecular Pharmacology, 2005, 67, 1342-1348.                                                             | 1.0 | 113       |
| 12 | Down-regulation of Phospho-Akt Is a Major Molecular Determinant of Bortezomib-Induced Apoptosis<br>in Hepatocellular Carcinoma Cells. Cancer Research, 2008, 68, 6698-6707.                                                                                               | 0.4 | 109       |
| 13 | CIP2A is a target of bortezomib in human triple negative breast cancer cells. Breast Cancer Research, 2012, 14, R68.                                                                                                                                                      | 2.2 | 105       |
| 14 | Nilotinib Induces Autophagy in Hepatocellular Carcinoma through AMPK Activation. Journal of<br>Biological Chemistry, 2013, 288, 18249-18259.                                                                                                                              | 1.6 | 82        |
| 15 | Tamoxifen induces apoptosis through cancerous inhibitor of protein phosphatase 2A–dependent<br>phospho-Akt inactivation in estrogen receptor–negative human breast cancer cells. Breast Cancer<br>Research, 2014, 16, 431.                                                | 2.2 | 80        |
| 16 | Bortezomib Overcomes Tumor Necrosis Factor-related Apoptosis-inducing Ligand Resistance in<br>Hepatocellular Carcinoma Cells in Part through the Inhibition of the Phosphatidylinositol<br>3-Kinase/Akt Pathway. Journal of Biological Chemistry, 2009, 284, 11121-11133. | 1.6 | 79        |
| 17 | STAT3 Mediates Regorafenib-Induced Apoptosis in Hepatocellular Carcinoma. Clinical Cancer Research, 2014, 20, 5768-5776.                                                                                                                                                  | 3.2 | 78        |
| 18 | Induction of DNA Damage-Inducible Gene GADD45β Contributes to Sorafenib-Induced Apoptosis in Hepatocellular Carcinoma Cells, Cancer Research, 2010, 70, 9309-9318.                                                                                                        | 0.4 | 76        |

| #  | Article                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Blockade of STAT3 activation by sorafenib derivatives through enhancing SHP-1 phosphatase activity.<br>European Journal of Medicinal Chemistry, 2012, 55, 220-227.                                                                           | 2.6 | 75        |
| 20 | Sorafenib and its derivative SC-1 exhibit antifibrotic effects through signal transducer and activator of transcription 3 inhibition. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7243-7248. | 3.3 | 65        |
| 21 | Synergistic interactions between imatinib mesylate and the novel phosphoinositide-dependent kinase-1 inhibitor OSU-03012 in overcoming imatinib mesylate resistance. Blood, 2005, 105, 4021-4027.                                            | 0.6 | 64        |
| 22 | Synergistic interactions between sorafenib and bortezomib in hepatocellular carcinoma involve PP2A-dependent Akt inactivation. Journal of Hepatology, 2010, 52, 88-95.                                                                       | 1.8 | 64        |
| 23 | Novel sorafenib analogues induce apoptosis through SHP-1 dependent STAT3 inactivation in human breast cancer cells. Breast Cancer Research, 2013, 15, R63.                                                                                   | 2.2 | 63        |
| 24 | Discovery of novel src homology region 2 domain-containing phosphatase 1 agonists from sorafenib for the treatment of hepatocellular carcinoma. Hepatology, 2014, 59, 190-201.                                                               | 3.6 | 63        |
| 25 | Effect of Age and Biological Subtype on the Risk and Timing of Brain Metastasis in Breast Cancer<br>Patients. PLoS ONE, 2014, 9, e89389.                                                                                                     | 1.1 | 57        |
| 26 | CIP2A Is a Predictor of Poor Prognosis in Colon Cancer. Journal of Gastrointestinal Surgery, 2012, 16, 1037-1047.                                                                                                                            | 0.9 | 56        |
| 27 | Canagliflozin inhibits growth of hepatocellular carcinoma via blocking glucose-influx-induced β-catenin activation. Cell Death and Disease, 2019, 10, 420.                                                                                   | 2.7 | 55        |
| 28 | Functional Characterization of Glycine N-Methyltransferase and Its Interactive Protein DEPDC6/DEPTOR in Hepatocellular Carcinoma. Molecular Medicine, 2012, 18, 286-296.                                                                     | 1.9 | 54        |
| 29 | CIP2A-mediated Akt activation plays a role in bortezomib-induced apoptosis in head and neck squamous cell carcinoma cells. Oral Oncology, 2012, 48, 585-593.                                                                                 | 0.8 | 54        |
| 30 | Palbociclib enhances radiosensitivity of hepatocellular carcinoma and cholangiocarcinoma via<br>inhibiting ataxia telangiectasia–mutated kinase–mediated DNA damage response. European Journal of<br>Cancer, 2018, 102, 10-22.               | 1.3 | 54        |
| 31 | Inhibition of Bcl-2 improves effect of LCL161, a SMAC mimetic, in hepatocellular carcinoma cells.<br>Biochemical Pharmacology, 2012, 84, 268-277.                                                                                            | 2.0 | 52        |
| 32 | Erlotinib derivative inhibits hepatocellular carcinoma by targeting CIP2A to reactivate protein phosphatase 2A. Cell Death and Disease, 2014, 5, e1359-e1359.                                                                                | 2.7 | 52        |
| 33 | Palbociclib induces activation of <scp>AMPK</scp> and inhibits hepatocellular carcinoma in a<br><scp>CDK</scp> 4/6â€independent manner. Molecular Oncology, 2017, 11, 1035-1049.                                                             | 2.1 | 52        |
| 34 | SHP-1 is a target of regorafenib in colorectal cancer. Oncotarget, 2014, 5, 6243-6251.                                                                                                                                                       | 0.8 | 50        |
| 35 | A novel obatoclax derivative, SC-2001, induces apoptosis in hepatocellular carcinoma cells through SHP-1-dependent STAT3 inactivation. Cancer Letters, 2012, 321, 27-35.                                                                     | 3.2 | 48        |
| 36 | Sorafenib Enhances Radiation-Induced Apoptosis in Hepatocellular Carcinoma by Inhibiting STAT3.<br>International Journal of Radiation Oncology Biology Physics, 2013, 86, 456-462.                                                           | 0.4 | 47        |

| #  | Article                                                                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Regorafenib (Stivarga) pharmacologically targets epithelial-mesenchymal transition in colorectal cancer. Oncotarget, 2016, 7, 64136-64147.                                                            | 0.8 | 46        |
| 38 | Inhibition of CIP2A determines erlotinib-induced apoptosis in hepatocellular carcinoma. Biochemical<br>Pharmacology, 2013, 85, 356-366.                                                               | 2.0 | 43        |
| 39 | Afatinib induces apoptosis in NSCLC without EGFR mutation through Elk-1-mediated suppression of CIP2A. Oncotarget, 2015, 6, 2164-2179.                                                                | 0.8 | 43        |
| 40 | Lapatinib inhibits CIP2A/PP2A/p-Akt signaling and induces apoptosis in triple negative breast cancer cells. Oncotarget, 2016, 7, 9135-9149.                                                           | 0.8 | 43        |
| 41 | SC-2001 Overcomes STAT3-mediated Sorafenib Resistance through RFX-1/SHP-1 Activation in Hepatocellular Carcinoma. Neoplasia, 2014, 16, 595-605.                                                       | 2.3 | 42        |
| 42 | Alteration of SHP-1/p-STAT3 Signaling: A Potential Target for Anticancer Therapy. International Journal of Molecular Sciences, 2017, 18, 1234.                                                        | 1.8 | 41        |
| 43 | Cancerous inhibitor of protein phosphatase 2A determines bortezomib-induced apoptosis in leukemia<br>cells. Haematologica, 2013, 98, 729-738.                                                         | 1.7 | 40        |
| 44 | Dovitinib sensitizes hepatocellular carcinoma cells to TRAIL and tigatuzumab, a novel anti-DR5<br>antibody, through SHP-1-dependent inhibition of STAT3. Biochemical Pharmacology, 2012, 83, 769-777. | 2.0 | 39        |
| 45 | Bortezomib Sensitizes HCC Cells to CS-1008, an Antihuman Death Receptor 5 Antibody, through the<br>Inhibition of CIP2A. Molecular Cancer Therapeutics, 2011, 10, 892-901.                             | 1.9 | 37        |
| 46 | Disrupting VEGF-A paracrine and autocrine loops by targeting SHP-1 suppresses triple negative breast cancer metastasis. Scientific Reports, 2016, 6, 28888.                                           | 1.6 | 37        |
| 47 | Cancerous Inhibitor of Protein Phosphatase 2A Mediates Bortezomib-Induced Autophagy in<br>Hepatocellular Carcinoma Independent of Proteasome. PLoS ONE, 2013, 8, e55705.                              | 1.1 | 37        |
| 48 | Degradation of Epidermal Growth Factor Receptor Mediates Dasatinib-Induced Apoptosis in Head and<br>Neck Squamous Cell Carcinoma Cells. Neoplasia, 2012, 14, 463-IN3.                                 | 2.3 | 36        |
| 49 | EGFR-independent Elk1/CIP2A signalling mediates apoptotic effect of an erlotinib derivative TD52 in triple-negative breast cancer cells. European Journal of Cancer, 2017, 72, 112-123.               | 1.3 | 35        |
| 50 | Development of erlotinib derivatives as CIP2A-ablating agents independent of EGFR activity. Bioorganic and Medicinal Chemistry, 2012, 20, 6144-6153.                                                  | 1.4 | 34        |
| 51 | Protein tyrosine phosphatase 1B dephosphorylates PITX1 and regulates p120RasGAP in hepatocellular carcinoma. Hepatology, 2016, 63, 1528-1543.                                                         | 3.6 | 34        |
| 52 | Nintedanib (BIBF-1120) inhibits hepatocellular carcinoma growth independent of angiokinase activity.<br>Journal of Hepatology, 2014, 61, 89-97.                                                       | 1.8 | 33        |
| 53 | A combination of sorafenib and SC-43 is a synergistic SHP-1 agonist duo to advance hepatocellular carcinoma therapy. Cancer Letters, 2016, 371, 205-213.                                              | 3.2 | 31        |
| 54 | Sorafenib derivatives induce apoptosis through inhibition of STAT3 independent of Raf. European Journal of Medicinal Chemistry, 2011, 46, 2845-2851.                                                  | 2.6 | 29        |

| #  | Article                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Bortezomib enhances radiation-induced apoptosis in solid tumors by inhibiting CIP2A. Cancer Letters, 2012, 317, 9-15.                                                                                                                       | 3.2 | 29        |
| 56 | CIP2A mediates erlotinib-induced apoptosis in non-small cell lung cancer cells without EGFR mutation. Lung Cancer, 2014, 85, 152-160.                                                                                                       | 0.9 | 29        |
| 57 | Sorafenib analogue <scp>SC</scp> â€60 induces apoptosis through the<br><scp>SHP</scp> â€1/ <scp>STAT</scp> 3 pathway and enhances docetaxel cytotoxicity in tripleâ€negative<br>breast cancer cells. Molecular Oncology, 2017, 11, 266-279. | 2.1 | 29        |
| 58 | The tyrosine kinase inhibitor nintedanib activates SHP-1 and induces apoptosis in triple-negative breast cancer cells. Experimental and Molecular Medicine, 2017, 49, e366-e366.                                                            | 3.2 | 29        |
| 59 | RFX1-dependent activation of SHP-1 induces autophagy by a novel obatoclax derivative in hepatocellular carcinoma cells. Oncotarget, 2014, 5, 4909-4919.                                                                                     | 0.8 | 28        |
| 60 | SET antagonist enhances the chemosensitivity of non-small cell lung cancer cells by reactivating protein phosphatase 2A. Oncotarget, 2016, 7, 638-655.                                                                                      | 0.8 | 28        |
| 61 | TD-19, an Erlotinib Derivative, Induces Epidermal Growth Factor Receptor Wild-Type Nonsmall-Cell<br>Lung Cancer Apoptosis through CIP2A-Mediated Pathway. Journal of Pharmacology and Experimental<br>Therapeutics, 2014, 351, 352-358.     | 1.3 | 27        |
| 62 | Downregulation of signal transducer and activator of transcription 3 by sorafenib: A novel<br>mechanism for hepatocellular carcinoma therapy. World Journal of Gastroenterology, 2014, 20, 15269.                                           | 1.4 | 27        |
| 63 | Pharmacological Targeting SHP-1-STAT3 Signaling Is a Promising Therapeutic Approach for the Treatment of Colorectal Cancer. Neoplasia, 2015, 17, 687-696.                                                                                   | 2.3 | 25        |
| 64 | Reprogramming the oncogenic response: SET protein as a potential therapeutic target in cancer.<br>Expert Opinion on Therapeutic Targets, 2017, 21, 685-694.                                                                                 | 1.5 | 22        |
| 65 | Synthesis and biological activity of obatoclax derivatives as novel and potent SHP-1 agonists.<br>European Journal of Medicinal Chemistry, 2012, 56, 127-133.                                                                               | 2.6 | 21        |
| 66 | RFX-1-dependent activation of SHP-1 inhibits STAT3 signaling in hepatocellular carcinoma cells.<br>Carcinogenesis, 2014, 35, 2807-2814.                                                                                                     | 1.3 | 20        |
| 67 | A sorafenib derivative and novel SHP-1 agonist, SC-59, acts synergistically with radiotherapy in hepatocellular carcinoma cells through inhibition of STAT3. Cancer Letters, 2014, 349, 136-143.                                            | 3.2 | 20        |
| 68 | Protein phosphatase 5 promotes hepatocarcinogenesis through interaction with AMP-activated protein kinase. Biochemical Pharmacology, 2017, 138, 49-60.                                                                                      | 2.0 | 20        |
| 69 | Sorafenib and its derivative <scp>SC</scp> â€49 sensitize hepatocellular carcinoma cells to<br><scp>CS</scp> â€1008, a humanized antiâ€TNFRSF10B <scp> (DR</scp> 5) antibody. British Journal of<br>Pharmacology, 2013, 168, 658-672.       | 2.7 | 19        |
| 70 | Sorafenib Action in Hepatitis B Virus X–Activated Oncogenic Androgen Pathway in Liver through<br>SHP-1. Journal of the National Cancer Institute, 2015, 107, djv190.                                                                        | 3.0 | 19        |
| 71 | Inhibition of protein phosphatase 5 suppresses non-small cell lung cancer through AMP-activated kinase activation. Lung Cancer, 2017, 112, 81-89.                                                                                           | 0.9 | 18        |
| 72 | Targeting SHP-1-STAT3 signaling: A promising therapeutic approach for the treatment of cholangiocarcinoma. Oncotarget, 2017, 8, 65077-65089.                                                                                                | 0.8 | 18        |

| #  | Article                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Cancerous inhibitor of protein phosphatase 2A (CIP2A) is an independent prognostic marker in<br>wild-type KRAS metastatic colorectal cancer after colorectal liver metastasectomy. BMC Cancer, 2015,<br>15, 301.                                               | 1.1 | 17        |
| 74 | Obatoclax analog SC-2001 inhibits STAT3 phosphorylation through enhancing SHP-1 expression and induces apoptosis in human breast cancer cells. Breast Cancer Research and Treatment, 2014, 146, 71-84.                                                         | 1.1 | 16        |
| 75 | Sequential combination of docetaxel with a SHP-1 agonist enhanced suppression of p-STAT3 signaling and apoptosis in triple negative breast cancer cells. Journal of Molecular Medicine, 2017, 95, 965-975.                                                     | 1.7 | 16        |
| 76 | Dovitinib Acts As a Novel Radiosensitizer in Hepatocellular Carcinoma by Targeting SHP-1/STAT3<br>Signaling. International Journal of Radiation Oncology Biology Physics, 2016, 95, 761-771.                                                                   | 0.4 | 14        |
| 77 | Src-homology protein tyrosine phosphatase-1 agonist, SC-43, reduces liver fibrosis. Scientific Reports, 2017, 7, 1728.                                                                                                                                         | 1.6 | 13        |
| 78 | TD-92, a novel erlotinib derivative, depletes tumor-associated macrophages in non-small cell lung<br>cancer via down-regulation of CSF-1R and enhances the anti-tumor effects of anti-PD-1. Cancer Letters,<br>2021, 498, 142-151.                             | 3.2 | 13        |
| 79 | Signal Transducer and Activator of Transcription 3 as Molecular Therapy for Non–Small-Cell Lung<br>Cancer. Journal of Thoracic Oncology, 2014, 9, 488-496.                                                                                                     | 0.5 | 11        |
| 80 | SCâ€1, a sorafenib derivative, shows antiâ€ŧumor effects in osteogenic sarcoma cells. Journal of<br>Orthopaedic Research, 2013, 31, 335-342.                                                                                                                   | 1.2 | 9         |
| 81 | Bortezomib Congeners Induce Apoptosis of Hepatocellular Carcinoma via CIP2A Inhibition. Molecules, 2013, 18, 15398-15411.                                                                                                                                      | 1.7 | 9         |
| 82 | Protein tyrosine phosphatase 1B targets PITX1/p120RasGAP thus showing therapeutic potential in colorectal carcinoma. Scientific Reports, 2016, 6, 35308.                                                                                                       | 1.6 | 9         |
| 83 | Carfilzomib induces leukaemia cell apoptosis via inhibiting <scp>ELK</scp> 1/ <scp>KIAA</scp> 1524<br>(Elkâ€1/ <scp>CIP</scp> 2A) and activating <scp>PP</scp> 2A not related to proteasome inhibition. British<br>Journal of Haematology, 2017, 177, 726-740. | 1.2 | 9         |
| 84 | Antagonizing SET Augments the Effects of Radiation Therapy in Hepatocellular Carcinoma through<br>Reactivation of PP2A-Mediated Akt Downregulation. Journal of Pharmacology and Experimental<br>Therapeutics, 2018, 366, 410-421.                              | 1.3 | 9         |
| 85 | SC-60, a Dimer-Based Sorafenib Derivative, Shows a Better Anti–Hepatocellular Carcinoma Effect than<br>Sorafenib in a Preclinical Hepatocellular Carcinoma Model. Molecular Cancer Therapeutics, 2014, 13,<br>27-36.                                           | 1.9 | 7         |
| 86 | Serine/threonine protein phosphatase 5 is a potential therapeutic target in cholangiocarcinoma. Liver<br>International, 2018, 38, 2248-2259.                                                                                                                   | 1.9 | 7         |
| 87 | SH2 domain-containing phosphatase 1 regulates pyruvate kinase M2 in hepatocellular carcinoma.<br>Oncotarget, 2016, 7, 22193-22205.                                                                                                                             | 0.8 | 6         |
| 88 | Copper–obatoclax derivative complexes mediate DNA cleavage and exhibit anti-cancer effects in hepatocellular carcinoma. Chemico-Biological Interactions, 2015, 228, 108-113.                                                                                   | 1.7 | 4         |
| 89 | Sensitization of hepatocellular carcinoma (HCC) to tigatuzumab (CS-1008), a humanized anti-DR5<br>antibody, by sorafenib and its derivative SC-49 Journal of Clinical Oncology, 2012, 30, e14516-e14516.                                                       | 0.8 | 0         |