Jia-ou Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4639070/publications.pdf

Version: 2024-02-01

		76196	74018
174	6,551	40	75
papers	citations	h-index	g-index
175	175	175	8927
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Epitaxial Growth and Airâ€5tability of Monolayer Antimonene on PdTe ₂ . Advanced Materials, 2017, 29, 1605407.	11.1	313
2	Bismuth Oxybromide with Reasonable Photocatalytic Reduction Activity under Visible Light. ACS Catalysis, 2014, 4, 954-961.	5.5	300
3	Covalency competition dominates the water oxidation structure–activity relationship on spinel oxides. Nature Catalysis, 2020, 3, 554-563.	16.1	284
4	Redâ€Carbonâ€Quantumâ€Dotâ€Doped SnO ₂ Composite with Enhanced Electron Mobility for Efficient and Stable Perovskite Solar Cells. Advanced Materials, 2020, 32, e1906374.	11.1	230
5	Epitaxial Growth of Flat Antimonene Monolayer: A New Honeycomb Analogue of Graphene. Nano Letters, 2018, 18, 2133-2139.	4.5	219
6	Construction of a sp ³ /sp ² Carbon Interface in 3D Nâ€Doped Nanocarbons for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2019, 58, 15089-15097.	7.2	215
7	Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nature Catalysis, 2022, 5, 300-310.	16.1	175
8	Giant polarization in super-tetragonal thin films through interphase strain. Science, 2018, 361, 494-497.	6.0	173
9	One-pot synthesis of porous 1T-phase MoS2 integrated with single-atom Cu doping for enhancing electrocatalytic hydrogen evolution reaction. Applied Catalysis B: Environmental, 2019, 251, 87-93.	10.8	160
10	Singleâ€Atom Fe Catalysts for Fentonâ€Like Reactions: Roles of Different N Species. Advanced Materials, 2022, 34, e2110653.	11.1	158
11	Intrinsically patterned two-dimensional materials for selective adsorption of molecules andÂnanoclusters. Nature Materials, 2017, 16, 717-721.	13.3	150
12	Hybrid 0D–2D black phosphorus quantum dots–graphitic carbon nitride nanosheets for efficient hydrogen evolution. Nano Energy, 2018, 50, 552-561.	8.2	148
13	Electronic structure of antimonene grown on Sb2Te3 (111) and Bi2Te3 substrates. Journal of Applied Physics, 2016, 119, .	1.1	143
14	Activating Titania for Efficient Electrocatalysis by Vacancy Engineering. ACS Catalysis, 2018, 8, 4288-4293.	5.5	141
15	Quasi-freestanding epitaxial silicene on Ag(111) by oxygen intercalation. Science Advances, 2016 , 2 , $e1600067$.	4.7	138
16	Tuning Bifunctional Oxygen Electrocatalysts by Changing the Aâ€Site Rareâ€Earth Element in Perovskite Nickelates. Advanced Functional Materials, 2018, 28, 1803712.	7.8	122
17	Thin-Layer Fe ₂ TiO ₅ on Hematite for Efficient Solar Water Oxidation. ACS Nano, 2015, 9, 5348-5356.	7.3	121
18	Modulation of perovskite crystallization processes towards highly efficient and stable perovskite solar cells with MXene quantum dot-modified SnO ₂ . Energy and Environmental Science, 2021, 14, 3447-3454.	15.6	115

#	Article	IF	CITATIONS
19	Highly wettable and metallic NiFe-phosphate/phosphide catalyst synthesized by plasma for highly efficient oxygen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 7509-7516.	5.2	112
20	Direct Synthesis of Nickel(II) Tetraphenylporphyrin and Its Interaction with a Au(111) Surface: A Comprehensive Study. Journal of Physical Chemistry C, 2010, 114, 9908-9916.	1.5	100
21	Epitaxially grown monolayer VSe 2 : an air-stable magnetic two-dimensional material with low work function at edges. Science Bulletin, 2018, 63, 419-425.	4.3	92
22	Band Gap Modulated by Electronic Superlattice in Blue Phosphorene. ACS Nano, 2018, 12, 5059-5065.	7. 3	92
23	A dye-sensitized visible light photocatalyst-Bi24O31Cl10. Scientific Reports, 2014, 4, 7384.	1.6	91
24	Photo-induced non-volatile VO2 phase transition for neuromorphic ultraviolet sensors. Nature Communications, 2022, 13, 1729.	5.8	88
25	Strain stabilized nickel hydroxide nanoribbons for efficient water splitting. Energy and Environmental Science, 2020, 13, 229-237.	15.6	78
26	Cooperative Electron–Phonon Coupling and Buckled Structure in Germanene on Au(111). ACS Nano, 2017, 11, 3553-3559.	7.3	75
27	The Origin of Oxygen Vacancies Controlling La _{2/3} Sr _{1/3} MnO ₃ Electronic and Magnetic Properties. Advanced Materials Interfaces, 2016, 3, 1500753.	1.9	73
28	Effects of Oxygen Adsorption on the Surface State of Epitaxial Silicene on Ag(111). Scientific Reports, 2014, 4, 7543.	1.6	70
29	Metal–Insulator Transition Induced by Oxygen Vacancies from Electrochemical Reaction in Ionic Liquidâ€Gated Manganite Films. Advanced Materials Interfaces, 2015, 2, 1500407.	1.9	68
30	Investigation of electron-phonon coupling in epitaxial silicene by <i>in situ</i> Raman spectroscopy. Physical Review B, 2015, 91, .	1.1	67
31	Preparation and application in p–n homojunction diode of p-type transparent conducting Ga-doped SnO2 thin films. Thin Solid Films, 2010, 518, 5542-5545.	0.8	62
32	Evidence of Topological Edge States in Buckled Antimonene Monolayers. Nano Letters, 2019, 19, 6323-6329.	4.5	61
33	The formation of (NiFe)S ₂ pyrite mesocrystals as efficient pre-catalysts for water oxidation. Chemical Science, 2018, 9, 2762-2767.	3.7	60
34	Dirac Signature in Germanene on Semiconducting Substrate. Advanced Science, 2018, 5, 1800207.	5.6	59
35	Unzipping of black phosphorus to form zigzag-phosphorene nanobelts. Nature Communications, 2020, 11, 3917.	5.8	55
36	Construction of a sp ³ /sp ² Carbon Interface in 3D Nâ€Doped Nanocarbons for the Oxygen Reduction Reaction. Angewandte Chemie, 2019, 131, 15233-15241.	1.6	49

#	Article	IF	CITATIONS
37	Hydrogen Impurity Defects in Rutile TiO2. Scientific Reports, 2015, 5, 17634.	1.6	47
38	Structural analysis and magnetic properties of Gd doped BiFeO3 ceramics. Ceramics International, 2014, 40, 14083-14089.	2.3	46
39	Revealing the role of lattice distortions in the hydrogen-induced metal-insulator transition of SmNiO3. Nature Communications, 2019, 10, 694.	5.8	46
40	Overcoming synthetic metastabilities and revealing metal-to-insulator transition & metal-to-insulator & metal-to-i	6.4	44
41	Fabrication of a Singleâ€Atom Platinum Catalyst for the Hydrogen Evolution Reaction: A New Protocol by Utilization of H _{<i>x</i>} MoO _{3â°'<i>x</i>} with Plasmon Resonance. ChemCatChem, 2018, 10, 946-950.	1.8	43
42	Band gap engineering of TiO2 through hydrogenation. Applied Physics Letters, 2014, 105, .	1.5	39
43	High quality PdTe2 thin films grown by molecular beam epitaxy. Chinese Physics B, 2018, 27, 086804.	0.7	39
44	Germanium Nanosheets with Dirac Characteristics as a Saturable Absorber for Ultrafast Pulse Generation. Advanced Materials, 2021, 33, e2101042.	11.1	38
45	Observation of van Hove Singularities in Twisted Silicene Multilayers. ACS Central Science, 2016, 2, 517-521.	5. 3	37
46	Chemical-Pressure-Modulated BaTiO ₃ Thin Films with Large Spontaneous Polarization and High Curie Temperature. Journal of the American Chemical Society, 2021, 143, 6491-6497.	6.6	37
47	Amorphous MoO _{3â^'x} nanosheets prepared by the reduction of crystalline MoO ₃ by Mo metal for LSPR and photothermal conversion. Chemical Communications, 2019, 55, 12527-12530.	2.2	36
48	Self-powered sensitive and stable UV-visible photodetector based on GdNiO3/Nb-doped SrTiO3 heterojunctions. Applied Physics Letters, 2017, 110, .	1.5	35
49	Effects of oxygen vacancy on the electronic structure and multiferroics in sol–gel derived Pb0.8Co0.2TiO3 thin films. Dalton Transactions, 2013, 42, 10358.	1.6	32
50	Manipulating the Structural and Electronic Properties of Epitaxial SrCoO _{2.5} Thin Films by Tuning the Epitaxial Strain. ACS Applied Materials & Epitaxial Strain. ACS Applied Materials & Epitaxial Strain.	4.0	31
51	Understanding the Electronic Structure Evolution of Epitaxial LaNi _{1–<i>x</i>} Fe _{<i>x</i>} O ₃ Thin Films for Water Oxidation. Nano Letters, 2021, 21, 8324-8331.	4.5	31
52	Probing Ligand-Induced Cooperative Orbital Redistribution That Dominates Nanoscale Molecule〓Surface Interactions with One-Unit-Thin TiO ₂ Nanosheets. Nano Letters, 2018, 18, 7809-7815.	4.5	30
53	Epitaxial fabrication of two-dimensional NiSe2 on Ni(111) substrate. Applied Physics Letters, 2017, 111, .	1.5	29
54	Synchrotron X-ray Absorption Spectroscopy Study of Local Structure in Al-Doped BiFeO3 Powders. Nanoscale Research Letters, 2019, 14, 137.	3.1	29

#	Article	IF	Citations
55	A direct Fe–O coordination at the FePc/MoO _x interface investigated by XPS and NEXAFS spectroscopies. Physical Chemistry Chemical Physics, 2015, 17, 3463-3469.	1.3	27
56	SnO2/Mg combination electron selective transport layer for Si heterojunction solar cells. Solar Energy Materials and Solar Cells, 2019, 200, 109996.	3.0	27
57	Electronic structure evolutions driven by oxygen vacancy in SrCoO3â^x films. Science China Materials, 2019, 62, 1162-1168.	3.5	27
58	O2phole-assisted electronic processes in the Pr1 \hat{a} °xSrxMnO3(x=0.0, 0.3) system. Physical Review B, 2004, 70, .	1.1	26
59	Local electronic structure analysis of Zn-doped BiFeO3 powders by X-ray absorption fine structure spectroscopy. Journal of Alloys and Compounds, 2017, 710, 843-849.	2.8	26
60	A d-Band Electron Correlated Thermoelectric Thermistor Established in Metastable Perovskite Family of Rare-Earth Nickelates. ACS Applied Materials & Samp; Interfaces, 2019, 11, 34128-34134.	4.0	26
61	Airâ€6table Monolayer Cu ₂ Se Exhibits a Purely Thermal Structural Phase Transition. Advanced Materials, 2020, 32, e1908314.	11.1	26
62	Charge transfer dynamics of 3,4,9,10-perylene-tetracarboxylic-dianhydride molecules on Au(111) probed by resonant photoemission spectroscopy. Journal of Chemical Physics, 2011, 135, 174701.	1.2	25
63	Enhanced switchable photovoltaic response and ferromagnetic of Co-doped BiFeO3 based ferroelectric thin films. Journal of Alloys and Compounds, 2018, 742, 351-355.	2.8	25
64	Realization of Strained Stanene by Interface Engineering. Journal of Physical Chemistry Letters, 2019, 10, 1558-1565.	2.1	25
65	Strainâ€Mediated High Conductivity in Ultrathin Antiferromagnetic Metallic Nitrides. Advanced Materials, 2021, 33, 2005920.	11.1	25
66	Hole Carriers Doping Effect on the Metal–Insulator Transition of N-Incorporated Vanadium Dioxide Thin Films. Journal of Physical Chemistry C, 2014, 118, 12837-12844.	1.5	24
67	Spontaneous Formation of a Superconductor–Topological Insulator–Normal Metal Layered Heterostructure. Advanced Materials, 2016, 28, 5013-5017.	11.1	24
68	The origin of enhanced photocatalytic activities of hydrogenated TiO ₂ nanoparticles. Dalton Transactions, 2017, 46, 10694-10699.	1.6	24
69	In Vitro Model on Glass Surfaces for Complex Interactions between Different Types of Cells. Langmuir, 2010, 26, 17790-17794.	1.6	22
70	Tailoring of polar and nonpolar ZnO planes on MgO (001) substrates through molecular beam epitaxy. Nanoscale Research Letters, 2012, 7, 184.	3.1	21
71	Oxygen vacancy induced electronic structure variation in the La0.2Sr0.8MnO3 thin film. AIP Advances, 2019, 9, .	0.6	21
72	Strong Ferromagnetism Achieved via Breathing Lattices in Atomically Thin Cobaltites. Advanced Materials, 2021, 33, e2001324.	11,1	21

#	Article	IF	CITATIONS
73	An experimental study of the local electronic structure of B-site gallium doped bismuth ferrite powders. Physics Letters, Section A: General, Atomic and Solid State Physics, 2017, 381, 2367-2373.	0.9	19
74	Nanoseparation-inspired manipulation of the synthesis of CdS nanorods. Nano Research, 2011, 4, 226-232.	5.8	18
75	Correlation between electronic structure and magnetic properties of Fe-doped ZnO films. Journal of Applied Physics, 2012, 111 , .	1.1	18
76	Strain-mediated insulator-metal transition in topotactically hydro-reduced SrFeO2. Science China: Physics, Mechanics and Astronomy, 2021, 64, 1.	2.0	18
77	Evidence of Surface-Preferential Co Distribution in ZnO Nanocrystal and Its Effects on the Ferromagnetic Property. ACS Applied Materials & Samp; Interfaces, 2010, 2, 2053-2059.	4.0	17
78	Electronic Structure of BiFe1â^'xMnxO3Thin Films Investigated by X-Ray Absorption Spectroscopy. Journal of Nanomaterials, 2012, 2012, 1-7.	1.5	17
79	Large-Gap Quantum Spin Hall State and Temperature-Induced Lifshitz Transition in Bi ₄ Br ₄ . ACS Nano, 2022, 16, 3036-3044.	7.3	17
80	Flexible VO ₂ Films for Inâ€Sensor Computing with Ultraviolet Light. Advanced Functional Materials, 2022, 32, .	7.8	17
81	Strain-Enhanced Charge Transfer and Magnetism at a Manganite/Nickelate Interface. ACS Applied Materials & Company (Interfaces, 2018, 10, 30803-30810.	4.0	16
82	Overlooked Transportation Anisotropies in d-Band Correlated Rare-Earth Perovskite Nickelates. Matter, 2020, 2, 1296-1306.	5.0	16
83	Electronic structure and room temperature ferromagnetism of C doped TiO2. Solid State Communications, 2016, 243, 7-11.	0.9	15
84	Anisotropic electronic structure of antimonene. Applied Physics Letters, 2019, 115, .	1.5	15
85	Distribution and concentration of surface oxygen vacancy of TiO ₂ and its photocatalytic activity. Journal Physics D: Applied Physics, 2020, 53, 424001.	1.3	15
86	Electronic structure evolution of single bilayer Bi(1 1 1) film on 3D topological insulator Bi2SexTe3â^'xsurfaces. Journal of Physics Condensed Matter, 2016, 28, 255501.	0.7	14
87	Dimensional Control of Octahedral Tilt in SrRuO ₃ via Infinite-Layered Oxides. Nano Letters, 2021, 21, 3146-3154.	4.5	14
88	Role of Atomic Interaction in Electronic Hybridization in Two-Dimensional Ag ₂ Ge Nanosheets. Journal of Physical Chemistry C, 2017, 121, 16754-16760.	1.5	13
89	Mo-Al co-doped VO2(B) thin films: CVD synthesis, thermal sensitive properties, synchrotron radiation photoelectron and absorption spectroscopy study. Journal of Alloys and Compounds, 2018, 745, 247-255.	2.8	13
90	Voltage-Controlled Oxygen Non-Stoichiometry in SrCoO _{3â^'Î} Thin Films. Chemistry of Materials, 2019, 31, 6117-6123.	3.2	13

#	Article	IF	Citations
91	A new type of noncovalent surface–π stacking interaction occurring on peroxide-modified titania nanosheets driven by vertical π-state polarization. Chemical Science, 2021, 12, 4411-4417.	3.7	13
92	Role of oxygen vacancies in colossal polarization in SmFeO _{3â^'Î'} thin films. Science Advances, 2022, 8, eabm8550.	4.7	13
93	XANES study of phenylalanine and glycine adsorption on single-walled carbon nanotubes. Materials Letters, 2009, 63, 431-433.	1.3	12
94	Supercritical synthesis and characterization of SWNT-based one dimensional nanomaterials. Nanoscale, 2011, 3, 3103.	2.8	12
95	Nonrandomly Distributed Tungsten Vacancies and Interstitial Boron Trimers in Tungsten Tetraboride. Journal of Physical Chemistry C, 2019, 123, 29314-29323.	1.5	12
96	Experimental Realization of Two-Dimensional Buckled Lieb Lattice. Nano Letters, 2020, 20, 2537-2543.	4.5	12
97	Anisotropic Electronic Structure and Interfacial Chemical Reaction of Stanene/Bi ₂ Te ₃ . Journal of Physical Chemistry C, 2020, 124, 4917-4924.	1.5	12
98	Structural twinning-induced insulating phase in CrN (111) films. Physical Review Materials, 2021, 5, .	0.9	12
99	Spontaneous phase segregation of Sr ₂ NiO ₃ and SrNi ₂ O ₃ during SrNiO ₃ heteroepitaxy. Science Advances, 2021, 7, .	4.7	12
100	First Endohedral Metallofullerene-Containing Polymer: Preparation and Characterization of Gd@C82-Polystyrene. Journal of Physical Chemistry C, 2010, 114, 7631-7636.	1.5	11
101	Data analysis method to achieve sub-10â€pm spatialÂresolution using extended X-ray absorption fine-structure spectroscopy. Journal of Synchrotron Radiation, 2014, 21, 756-761.	1.0	11
102	Controllable Ferromagnetism in Super-tetragonal PbTiO ₃ through Strain Engineering. Nano Letters, 2020, 20, 881-886.	4.5	11
103	Molten-salt synthesis of rare-earth nickelate electronic transition semiconductors at medium high metastability. Scripta Materialia, 2022, 207, 114271.	2.6	11
104	Room-Temperature Ferromagnetism at an Oxide-Nitride Interface. Physical Review Letters, 2022, 128, 017202.	2.9	11
105	An in situ resonant photoemission and x-ray absorption study of the BiFeO3 thin film. Ceramics International, 2016, 42, 10624-10630.	2.3	10
106	Investigation of the multiplet features of SrTiO ₃ in X-ray absorption spectra based on configuration interaction calculations. Journal of Synchrotron Radiation, 2018, 25, 777-784.	1.0	10
107	Experimental Synthesis of Strained Monolayer Silver Arsenide on Ag(111) Substrates. Chinese Physics Letters, 2020, 37, 068103.	1.3	10
108	Anisotropic electronic phase transition in CrN epitaxial thin films. Applied Physics Letters, 2022, 120, .	1.5	10

#	Article	IF	CITATIONS
109	Tunable Electronic Structures in Wrinkled 2D Transitionâ€Metalâ€Trichalcogenide (TMT) HfTe ₃ Films. Advanced Electronic Materials, 2016, 2, 1600324.	2.6	9
110	Interface chemistry study of InSb/Al 2 O 3 stacks upon in situ post deposition annealing by synchrotron radiation photoemission spectroscopy. Applied Surface Science, 2017, 425, 932-940.	3.1	9
111	Strong Coupling of Magnetism and Lattice Induces Near-Zero Thermal Expansion over Broad Temperature Windows in ErFe ₁₀ V _{2â°'} <i> _x </i> Mo <i> _x </i> Compounds. CCS Chemistry, 2021, 3, 1009-1015.	4.6	9
112	Highâ€Conductive Protonated Layered Oxides from H ₂ O Vaporâ€Annealed Brownmillerites. Advanced Materials, 2021, 33, e2104623. Observation of an Incommensurate Charge Density Wave in Monolayer Commensurate.	11.1	9
113	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mi>TiSe</mml:mi></mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mn>1</mml:mn><mml:mn>1</mml:mn><mml:mn>1</mml:mn><mml:mn>1</mml:mn><mml:mn>1</mml:mn><mml:mn>1</mml:mn><mml:mn>1</mml:mn><mml:mn>1</mml:mn><mml:mn>1</mml:mn><mml:mn>1</mml:mn><mml:mn>1</mml:mn><mml:mn>1</mml:mn><mml:mn>1</mml:mn><mml:mn>1</mml:mn><mml:mn>1</mml:mn><mml:mn>1</mml:mn><mml:mn>1</mml:mn><mml:mn>1</mml:mn><mml:mn>1</mml:mn><mml:mn>1</mml:mn><mml:mn>1</mml:mn><mml:mn>1</mml:mn><mml:mn>1</mml:mn><mml:mn>1</mml:mn><mml:mn>1</mml:mn><mml:mn>1</mml:mn><mml:mn>1</mml:mn><mml:mn>1</mml:mn><mml:mn>1</mml:mn><mml:mn>1</mml:mn><mml:mn>1</mml:mn><mml:mn>1</mml:mn><mml:mn>1</mml:mn><mml:mn>1</mml:mn><mml:mn>1</mml:mn><mml:mn>1</mml:mn><mml:mn>1</mml:mn><mml:mn>1</mml:mn><mml:mn>1</mml:mn><mml:mn>1</mml:mn><mml:mn>1</mml:mn><mml:mn>1</mml:mn><mml:mn>1</mml:mn><mml:mn>1</mml:mn><mml:mn>1</mml:mn><mml:mn>1</mml:mn><mml:mn>1</mml:mn><mml:mn>1</mml:mn><mml:mn>1</mml:mn><mml:mn>1</mml:mn><mml:mn>1</mml:mn><mml:mn>1</mml:mn><mml:mn>1</mml:mn><mml:mn>1</mml:mn><mml:mn>1</mml:mn><mml:mn>1</mml:mn><mml:mn>1</mml:mn><mml:mn>1</mml:mn><mml:mn>1</mml:mn><mml:mn>1</mml:mn><mml:mn>1</mml:mn><mml:mn>1</mml:mn><mml:mn>1</mml:mn><mml:mn>1</mml:mn><mml:mn>1</mml:mn>1<mml:mn>1</mml:mn>1<mml:mn>1</mml:mn><mml:mn>1</mml:mn><mml:mn>1</mml:mn><mml:mn>1</mml:mn><mml:mn>1</mml:mn><mml:mn>1</mml:mn><mml:mn>1</mml:mn><mml:mn>1</mml:mn><mml:mn>1</mml:mn><mml:mn>1</mml:mn><mml:mn>1</mml:mn><mml:mn>1</mml:mn>1<mml:mn>1</mml:mn>11<td>nl;mn>2<!--<br-->ETQq1 1</td><td>/mml:mn>0.784314 rg</td></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow>	nl;mn>2 <br ETQq1 1	/mml:mn>0.784314 rg
114	2022, 128, 026401. Fullerene film on metal surface: Diffusion of metal atoms and interface model. Applied Physics Letters, 2014, 104, .	1.5	8
115	Impact of thickness on microscopic and macroscopic properties of Fe-Te-Se superconductor thin films. AIP Advances, 2015, 5, 047149.	0.6	8
116	Synthesis of NiO Nanotubes via a Dynamic Thermal Oxidation Process. Materials, 2019, 12, 805.	1.3	8
117	Influence of nitrogen and magnesium doping on the properties of ZnO films. Chinese Physics B, 2016, 25, 076105.	0.7	7
118	Observation of selective surface element substitution in FeTe _{0.5} Se _{0.5} superconductor thin film exposed to ambient air by synchrotron radiation spectroscopy. Chinese Physics B, 2016, 25, 097402.	0.7	7
119	Well-saturated ferroelectric polarization in PbTiO3–SmFeO3 thin films. Inorganic Chemistry Frontiers, 2016, 3, 1473-1479.	3.0	7
120	Interface chemistry and surface morphology evolution study for InAs/Al2O3 stacks upon in situ ultrahigh vacuum annealing. Applied Surface Science, 2018, 443, 567-574.	3.1	7
121	Electronic states and molecular orientation of ITIC film. Chinese Physics B, 2018, 27, 088801.	0.7	7
122	The band structure change of Hf0.5Zr0.5O2/Ge system upon post deposition annealing. Applied Surface Science, 2019, 488, 778-782.	3.1	7
123	Research on the defect types transformation induced by growth temperature of vertical graphene nanosheets. Journal of Alloys and Compounds, 2019, 781, 1048-1053.	2.8	7
124	Frequency switchable correlated transports in perovskite rare-earth nickelates. Journal of Materials Chemistry A, 2020, 8, 13630-13637.	5.2	7
125	In-plane crystal field constrained electronic structure of stanene. Applied Physics Letters, 2020, 116, .	1.5	7
126	Angular dependent NEXAFS study of the molecular orientation of PTCDA multilayers on Au (111) surface. Science Bulletin, 2011, 56, 3575-3577.	1.7	6

#	Article	IF	Citations
127	Correspondence between the electronic structure and phase separation in a K-doped FeSe system. Journal of Physics Condensed Matter, 2017, 29, 395503.	0.7	6
128	Delta-temperatural electronic transportation achieved in metastable perovskite rare-earth nickelate thin films. Journal of Materials Chemistry C, 2019, 7, 8101-8108.	2.7	6
129	Revealing the role of interfacial heterogeneous nucleation in the metastable thin film growth of rare-earth nickelate electronic transition materials. Physical Chemistry Chemical Physics, 2022, 24, 9333-9344.	1.3	6
130	Hydrogen induced electronic transition within correlated perovskite nickelates with heavy rare-earth composition. Applied Physics Letters, 2022, 120, .	1. 5	6
131	Temperature effect on the electronic structure of Nb:SrTiO ₃ (100) surface. Chinese Physics B, 2015, 24, 027901.	0.7	5
132	Fullerene-derivative PC 61 BM forms three types of phase-pure monolayer on the surface of Au(111). Surface Science, 2016, 654, 8-13.	0.8	5
133	Reaction of PC61BM Film with Potassium. Journal of Physical Chemistry C, 2017, 121, 19097-19103.	1.5	5
134	Coexistence of dielectric relaxation and magnetic relaxation in compressively strained BiFeO3/Ba0.7Sr0.3TiO3 superlattices. Applied Physics Letters, 2019, 114, .	1.5	5
135	Epitaxial fabrication of monolayer copper arsenide on Cu(111)*. Chinese Physics B, 2020, 29, 077301.	0.7	5
136	Performance of the Recycled and Copper-Doped Materials from Spent Electrodes by XPS and Voltammetric Characteristics. Journal of the Electrochemical Society, 2020, 167, 090548.	1.3	5
137	Reversible Potassium Intercalation in Blue Phosphorene–Au Network Driven by an Electric Field. Journal of Physical Chemistry Letters, 2020, 11, 5584-5590.	2.1	5
138	Correlation transports at $\langle i \rangle p - \langle i \rangle / \langle i \rangle n - \langle i \rangle $ types in electron metastable perovskite family of rare-earth nickelates. Applied Physics Letters, 2020, 116, .	1.5	5
139	Potassium-doped PC71BM for hydrogen storage: Photoelectron spectroscopy and first-principles studies. International Journal of Hydrogen Energy, 2021, 46, 13061-13069.	3.8	5
140	Germanium Nanosheets with Dirac Characteristics as a Saturable Absorber for Ultrafast Pulse Generation (Adv. Mater. 32/2021). Advanced Materials, 2021, 33, 2170247.	11.1	5
141	Interfacial electronic states of misfit heterostructure between hexagonal ZnO and cubic NiO. Physical Review Materials, 2020, 4, .	0.9	5
142	Electronic structure of C84film studied by photoemission measurement and first-principles calculation. Journal of Physics Condensed Matter, 2009, 21, 265502.	0.7	4
143	Surface Modification Induced Shielding Effects on Electron Orbital Coupling in Metallofullerene. Journal of Nanoscience and Nanotechnology, 2010, 10, 8625-8631.	0.9	4
144	Electronic states of a C $<$ sub $>$ 70 $<$ /sub $>$ monolayer on the surface of Ag(111). Journal of Physics Condensed Matter, 2011, 23, 395002.	0.7	4

#	Article	IF	Citations
145	Detection of Fe 3d electronic states in the valence band and magnetic properties of Fe-doped ZnO film. Chinese Physics B, 2013, 22, 026101.	0.7	4
146	Measurement of core level and band offsets at the interface of ITO/Hg3In2Te6(110) heterojunction by synchrotron radiation photoelectron spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 2016, 207, 24-28.	0.8	4
147	In situ study on the thermal stability and interfaces properties of Er 2 O 3 /Al 2 O 3 /Si multi stacked films by X-ray photoelectron spectroscopy. Superlattices and Microstructures, 2017, 104, 415-421.	1.4	4
148	Single-crystal growth of the iron-based superconductor La _{0.34} Na _{0.66} Fe ₂ As ₂ . Superconductor Science and Technology, 2018, 31, 125008.	1.8	4
149	Magnetoresistance in Metallic Ferroelectrics. ACS Applied Electronic Materials, 2019, 1, 1225-1232.	2.0	4
150	Electronic-structure evolution of SrFeO _{3â€"x} during topotactic phase transformation. Journal of Physics Condensed Matter, 2022, 34, 064001.	0.7	4
151	Charge density wave states in phase-engineered monolayer VTe ₂ . Chinese Physics B, 2022, 31, 077101.	0.7	4
152	Enhancement of magnetism of Zn0.95Co0.05O films by p-type Cu+ doping. Progress in Natural Science: Materials International, 2011, 21, 31-35.	1.8	3
153	Electronic structure of La2O3/Si interface by in situ photoemission spectroscopy. Materials Letters, 2017, 191, 97-100.	1.3	3
154	Proposal for a photoelectron spectroscopy and microscopy beamline (0.5–11 keV) at the High Energy Photon Source. Journal of Synchrotron Radiation, 2019, 26, 559-564.	1.0	3
155	Electronic states driven by the crystal field in two-dimensional materials: The case of antimonene. Physical Review B, 2022, 105, .	1.1	3
156	Direct preparation and microstructure investigation of p-type transparent conducting Ga-doped SnO2 thin films. Powder Diffraction, 2010, 25, S36-S39.	0.4	2
157	Structural change of metallofullerene: an easier thermal decomposition. Nanoscale, 2011, 3, 4130.	2.8	2
158	Multiferroics and electronic structure of (1â^'x)PbTiO3â€"xBi(Ni1/2Ti1/2)O3 thin films. Thin Solid Films, 2013, 542, 155-159.	0.8	2
159	Elemental diffusion study of Ge/Al2O3 and Ge/AlN/Al2O3 interfaces upon post deposition annealing. Surfaces and Interfaces, 2017, 9, 51-57.	1.5	2
160	Analyze chemisorbed organic/metal interface by combining the two sub-interfaces model and the integer charge transfer model. AIP Advances, 2019, 9, 045122.	0.6	2
161	O $1s2p2p$ Auger decay in the $Pr1\hat{a}^*xSrxMnO3$ (x=0.0,0.3) system with excitation energies from O K threshold through above Mn L edge. Journal of Electron Spectroscopy and Related Phenomena, 2004, $137-140$, $445-449$.	0.8	1
162	Self-Construction of Core–Shell Structure by Metallofullerene-Containing Polymer. Journal of Nanoscience and Nanotechnology, 2011, 11, 2244-2250.	0.9	1

#	Article	IF	Citations
163	Electronic structures of 1-ML C84/Ag(111): Energy level alignment and work function variation. Surface Science, 2017, 666, 23-27.	0.8	1
164	Dipole-correlated carrier transportation and orbital reconfiguration in strain-distorted SrNbxTi1â°'xO3/KTaO3. Physical Chemistry Chemical Physics, 2017, 19, 29913-29917.	1.3	1
165	Interaction between the Non-Fullerene Acceptor ITIC and Potassium. ACS Omega, 2019, 4, 8087-8093.	1.6	1
166	Resistance Switching Behavior in Rectangle-Nano-Pattern SrTiO3 Induced by Simple Annealing. Materials, 2019, 12, 3698.	1.3	1
167	Electronic structure variations of polar and nonpolar ZnO lattices with nitrogen-ion bombardment using synchrotron-basedin situphotoemission and X-ray absorption spectroscopy. Journal of Synchrotron Radiation, 2020, 27, 83-89.	1.0	1
168	Electrical conductivity and infrared ray photoconductivity for lattice distorted SmNiO ₃ perovskite oxide film. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 026701.	0.2	1
169	A comparison between powders and thin films of single-walled carbon nanotubes for the adsorption behaviors of phenylalanine and glycine by XANES study. Science China: Physics, Mechanics and Astronomy, 2010, 53, 1449-1452.	2.0	0
170	In situelectronic structure investigation of Mn doped BiFeO3thin films. Journal of Physics: Conference Series, 2013, 430, 012103.	0.3	0
171	<i>In situ</i> electronic structural study of VO ₂ thin film across the metalâ€"insulator transition. Chinese Physics B, 2013, 22, 127103.	0.7	0
172	Photoelectric characteristics of silicon Pâ€"N junction with nanopillar texture: Analysis of X-ray photoelectron spectroscopy. Chinese Physics B, 2014, 23, 096101.	0.7	0
173	The photoemission study of InSb/HfO2 stacks upon N2 rapid thermal annealing. Vacuum, 2019, 168, 108815.	1.6	0
174	Ferromagnetic Materials: Strong Ferromagnetism Achieved via Breathing Lattices in Atomically Thin Cobaltites (Adv. Mater. 4/2021). Advanced Materials, 2021, 33, 2170026.	11.1	0