Yoshihito Kayaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4638925/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Regioselective Transfer Hydrogenative Defluorination of Polyfluoroarenes Catalyzed by Bifunctional Azairidacycle. Organics, 2022, 3, 150-160.	1.3	1
2	Asymmetric Transfer Hydrogenative Amination of Benzylic Ketones Catalyzed by Cp*Ir(III) Complexes Bearing a Chiral <i>N</i> -(2-Picolyl)sulfonamidato Ligand. Journal of Organic Chemistry, 2022, 87, 8458-8468.	3.2	5
3	The activation of furfuryl alcohol polymerization by oxygen and its enhanced mechanical properties. Journal of Applied Polymer Science, 2021, 138, 50311.	2.6	5
4	Oxy-tethered Cp*Ir(<scp>iii</scp>) complex as a competent catalyst for selective dehydrogenation from formic acid. Chemical Communications, 2021, 57, 5534-5537.	4.1	5
5	New Bifunctional Bis(azairidacycle) with Axial Chirality via Double Cyclometalation of 2,2′-Bis(aminomethyl)-1,1′-binaphthyl. Molecules, 2021, 26, 1165.	3.8	3
6	Convincing Catalytic Performance of Oxo-Tethered Ruthenium Complexes for Asymmetric Transfer Hydrogenation of Cyclic α-Halogenated Ketones through Dynamic Kinetic Resolution. Organic Letters, 2021, 23, 3070-3075.	4.6	14
7	Analysis of nitric acid decomposition of epoxy resin network structures for chemical recycling. Polymer Degradation and Stability, 2021, 186, 109537.	5.8	29
8	New Approach to Recycling of Epoxy Resins Using Nitric Acid: Regeneration of Decomposed Products through Hydrogenation. ACS Sustainable Chemistry and Engineering, 2021, 9, 12520-12529.	6.7	21
9	Synthesis of N,O-Chelating Hydrazidopalladium Complexes from 1,2-Bis(trifluoroacetyl)hydrazine. Inorganics, 2021, 9, 76.	2.7	0
10	Transfer hydrogenation of carbon dioxide via bicarbonate promoted by bifunctional C–N chelating Cp*lr complexes. Chemical Communications, 2020, 56, 10762-10765.	4.1	5
11	Amidines as Effective Ancillary Ligands in Copper-catalyzed Hydrogenation of Carbon Dioxide. Chemistry Letters, 2020, 49, 252-254.	1.3	9
12	Reductive Amination of Ketonic Compounds Catalyzed by Cp*Ir(III) Complexes Bearing a Picolinamidato Ligand. Journal of Organic Chemistry, 2019, 84, 10962-10977.	3.2	35
13	A P–C Chelate, Protic 1,2-Dihydropyridin-2-ylidene Ruthenium Complex: Synthesis, Structure, and Reversible Deprotonation. Chemistry Letters, 2019, 48, 787-790.	1.3	2
14	Multiple Absolute Stereocontrol in Cascade Lactone Formation via Dynamic Kinetic Resolution Driven by the Asymmetric Transfer Hydrogenation of Keto Acids with Oxo-Tethered Ruthenium Catalysts. Journal of the American Chemical Society, 2019, 141, 16354-16361.	13.7	33
15	Cleavage of N–H Bond of Ammonia via Metal–Ligand Cooperation Enables Rational Design of a Conceptually New Noyori–Ikariya Catalyst. Journal of the American Chemical Society, 2019, 141, 2661-2677.	13.7	23
16	Catalytic Hydrogenation of Carboxamides with a Bifunctional Cp*Ru Catalyst Bearing an Imidazol-2-ylidene with a Protic Aminoethyl Side Chain. Synthesis, 2019, 51, 2542-2547.	2.3	8
17	Poly(ethyleneimine)â€Mediated Consecutive Hydrogenation of Carbon Dioxide to Methanol with Ru Catalysts. European Journal of Inorganic Chemistry, 2019, 2019, 2375-2380.	2.0	17
18	Synthesis of a Half-Sandwich Hydroxidoiridium(III) Complex Bearing a Nonprotic N-Sulfonyldiamine Ligand and Its Transformations Triggered by the BrÃ,nsted Basicity. Inorganics, 2019, 7, 125.	2.7	1

Υοςηιμιτο Καγακι

#	Article	IF	CITATIONS
19	Formal Deoxygenative Hydrogenation of Lactams Using PN ^H P-Pincer Ruthenium Complexes under Nonacidic Conditions. Organic Letters, 2019, 21, 9954-9959.	4.6	19
20	Upgrading and expanding the scope of homogeneous transfer hydrogenation. Tetrahedron Letters, 2018, 59, 504-513.	1.4	73
21	Selective Asymmetric Transfer Hydrogenation of α‣ubstituted Acetophenones with Bifunctional Oxoâ€Tethered Ruthenium(II) Catalysts. Advanced Synthesis and Catalysis, 2018, 360, 568-574.	4.3	22
22	Protic NNN and NCN Pincerâ€Type Ruthenium Complexes Featuring (Trifluoromethyl)pyrazole Arms: Synthesis and Application to Catalytic Hydrogen Evolution from Formic Acid. Chemistry - an Asian Journal, 2018, 13, 73-80.	3.3	24
23	Synthesis and Reactivity of Cp*Ir ^{III} Complexes with a C–S Chelate Displaying Metal/Sulfur Bifunctionality. Organometallics, 2018, 37, 3342-3352.	2.3	3
24	Harmonious hydrogenation catalysts. Nature Catalysis, 2018, 1, 739-740.	34.4	5
25	<i>N</i> -Monomethylation of Aromatic Amines with Methanol via PN ^H P-Pincer Ru Catalysts. Organic Letters, 2018, 20, 3866-3870.	4.6	75
26	Accessible Bifunctional Oxy-Tethered Ruthenium(II) Catalysts for Asymmetric Transfer Hydrogenation. Organic Letters, 2018, 20, 5213-5218.	4.6	29
27	Copper Catalysts Unleashing the Potential for Hydrogenation of Carbonâ^'Oxygen Bonds. Asian Journal of Organic Chemistry, 2018, 7, 2005-2014.	2.7	16
28	Nucleophilic Aromatic Substitution in Hydrodefluorination Exemplified by Hydridoiridium(III) Complexes with Fluorinated Phenylsulfonyl-1,2-diphenylethylenediamine Ligands. Organometallics, 2018, 37, 1958-1969.	2.3	13
29	Hydrogen Evolution from Formic Acid and Hydrodefluorination of Fluoroarenes by Bifunctional Iridium Catalysts—Beyond the Transfer Hydrogenation. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2018, 76, 315-324.	0.1	3
30	A Bifunctional Iridium Catalyst Modified for Persistent Hydrogen Generation from Formic Acid: Understanding Deactivation via Cyclometalation of a 1,2-Diphenylethylenediamine Motif. ACS Catalysis, 2017, 7, 4479-4484.	11.2	44
31	Development of Homogeneous Hydrogenation of Carbon Dioxide to Formate Catalyzed by Copper Complexes. Energy Procedia, 2017, 114, 7150-7153.	1.8	4
32	Distinct Promotive Effects of 1,8â€Diazabicyclo[5.4.0]undecâ€7â€ene (DBU) on Polymer Supports in Copper atalyzed Hydrogenation of C=O Bonds. ChemCatChem, 2017, 9, 4501-4507.	3.7	8
33	Hydrodefluorination of Fluoroarenes Using Hydrogen Transfer Catalysts with a Bifunctional Iridium/NH Moiety. ACS Catalysis, 2016, 6, 5181-5185.	11.2	36
34	Cationic Iridium and Rhodium Complexes with C–N Chelating Primary Benzylic Amine Ligands as Potent Catalysts for Hydrogenation of Unsaturated Carbon–Nitrogen Bonds. Organometallics, 2016, 35, 1257-1264.	2.3	22
35	Comparative Study of Bifunctional Mononuclear and Dinuclear Amidoiridium Complexes with Chiral Câ°iN Chelating Ligands for the Asymmetric Transfer Hydrogenation of Ketones. Chemistry - an Asian Journal, 2016, 11, 2924-2931.	3.3	12
36	Efficient Access to Chiral Benzhydrols via Asymmetric Transfer Hydrogenation of Unsymmetrical Benzophenones with Bifunctional Oxo-Tethered Ruthenium Catalysts. Journal of the American Chemical Society, 2016, 138, 10084-10087.	13.7	116

Υοςηιμιτο Καγακι

#	Article	IF	CITATIONS
37	Atmospheric Hydrogenation of Esters Catalyzed by PNP-Ruthenium Complexes with an <i>N</i> -Heterocyclic Carbene Ligand. Organic Letters, 2016, 18, 3894-3897.	4.6	45
38	Azametallametallocene Formation via Double sp3 C–H Activation of 6-Substituted <i>ortho</i> -Toluidines by a Half-sandwich Acetatoiridium Complex. Chemistry Letters, 2015, 44, 188-190.	1.3	4
39	Synthetic Chemistry of Alkenylgold Complexes Associated with Catalytic Intermediates. Bulletin of Japan Society of Coordination Chemistry, 2015, 66, 3-11.	0.2	0
40	Enhanced Hydrogen Generation from Formic Acid by Halfâ€5andwich Iridium(III) Complexes with Metal/NH Bifunctionality: A Pronounced Switch from Transfer Hydrogenation. Chemistry - A European Journal, 2015, 21, 13513-13517.	3.3	63
41	Mechanistic Aspects of the Carboxylative Cyclization of Propargylamines and Carbon Dioxide Catalyzed by Gold(I) Complexes Bearing an <i>N</i> -Heterocyclic Carbene Ligand. ACS Catalysis, 2015, 5, 5135-5140.	11.2	77
42	Highly Selective Carboxylative Cyclization of Allenylmethylamines with Carbon Dioxide Using N-Heterocyclic Carbene-Silver(I) Catalysts. Organic Letters, 2015, 17, 2334-2337.	4.6	63
43	Hydrogenation of Carbon Dioxide to Formate Catalyzed by a Copper/1,8â€Diazabicyclo[5.4.0]undecâ€7â€ene System. Advanced Synthesis and Catalysis, 2015, 357, 1369-1373.	4.3	73
44	Hydrogenation of carboxylic acid derivatives with bifunctional ruthenium catalysts. Pure and Applied Chemistry, 2014, 86, 933-943.	1.9	19
45	Advantageous asymmetric ketone reduction with a competitive hydrogenation/transfer hydrogenation system using chiral bifunctional iridium catalysts. RSC Advances, 2014, 4, 61001-61004.	3.6	8
46	Aerobic oxidative desymmetrization of meso-diols with bifunctional amidoiridium catalysts bearing chiral N-sulfonyldiamine ligands. Tetrahedron Letters, 2014, 55, 1188-1191.	1.4	14
47	Heterolysis of NH-Indoles by Bifunctional Amido Complexes and Applications to Carboxylation with Carbon Dioxide. Organometallics, 2014, 33, 4479-4485.	2.3	17
48	Cycloaddition of tertiary aziridines and carbon dioxide using a recyclable organocatalyst, 1,3-di-tert-butylimidazolium-2-carboxylate: straightforward access to 3-substituted 2-oxazolidones. Green Chemistry, 2013, 15, 425-430.	9.0	71
49	NHC–Gold(I) Complexes as Effective Catalysts for the Carboxylative Cyclization of Propargylamines with Carbon Dioxide. Organometallics, 2013, 32, 5285-5288.	2.3	115
50	Studies on solubility of uranyl complexes in supercritical carbon dioxide and its controlling factors using UV-visible and ¹⁷ O- and ¹⁹ F-NMR spectroscopy. Journal of Nuclear Science and Technology, 2012, 49, 37-46.	1.3	10
51	Efficient dynamic kinetic resolution of racemic secondary alcohols by a chemoenzymatic system using bifunctional iridium complexes with C–N chelate amido ligands. Chemical Communications, 2012, 48, 3635.	4.1	55
52	Oxo-Tethered Ruthenium(II) Complex as a Bifunctional Catalyst for Asymmetric Transfer Hydrogenation and H ₂ Hydrogenation. Journal of the American Chemical Society, 2011, 133, 14960-14963.	13.7	295
53	Asymmetric nitrile-hydration with bifunctional ruthenium catalysts bearing chiral N-sulfonyldiamine ligands. Tetrahedron: Asymmetry, 2010, 21, 1169-1172.	1.8	28
54	Aerobic oxidation with bifunctional molecular catalysts. Pure and Applied Chemistry, 2010, 82, 1471-1483.	1.9	31

Υοςηιηίτο Καγακί

0.0

0

#	Article	IF	CITATIONS
55	Nâ€Heterocyclic Carbenes as Efficient Organocatalysts for CO ₂ Fixation Reactions. Angewandte Chemie - International Edition, 2009, 48, 4194-4197.	13.8	346
56	Palladium-catalyzed carboxylative cyclization of α-allenyl amines in dense carbon dioxide. Tetrahedron Letters, 2009, 50, 6491-6493.	1.4	45
57	Remarkable Positive Effect of Silver Salts on Asymmetric Hydrogenation of Acyclic Imines with Cp*Ir Complexes Bearing Chiral N-Sulfonylated Diamine Ligands. Organometallics, 2009, 28, 802-809.	2.3	111
58	Mesoporous silica-catalysed continuous chemical fixation of CO2 with N,N′-dimethylethylenediamine in supercriticalCO2: the efficient synthesis of 1,3-dimethyl-2-imidazolidinone. Chemical Communications, 2009, , 349-351.	4.1	46
59	Aerobic Oxidative Kinetic Resolution of Racemic Secondary Alcohols with Chiral Bifunctional Amido Complexes. Angewandte Chemie - International Edition, 2008, 47, 2447-2449.	13.8	160
60	Aerobic Oxidation of Alcohols with Bifunctional Transitionâ€Metal Catalysts Bearing C–N Chelate Ligands. Chemistry - an Asian Journal, 2008, 3, 1479-1485.	3.3	88
61	Utilization of <i>N</i> , <i>N</i> , i>N, i>N<	3.3	31
62	Synthesis and Reactivities of Cp*Ir Amide and Hydride Complexes Bearing Câ^'N Chelate Ligands. Organometallics, 2008, 27, 2795-2802.	2.3	108
63	Comparative Studies on Exchange Reactions of Hexafluoroacetylacetonate in Bis(hexafluoroacetylacetonato)(dimethyl sulfoxide)dioxouranium(VI) in Nonaqueous Solvent and Supercritical CO2. Inorganic Chemistry, 2008, 47, 349-359.	4.0	4
64	1H, 13C, and 19F NMR Studies on Molecular Interactions of CO2 with β-Diketones and UO2(β-diketonato)2DMSO Complexes in Supercritical CO2. Journal of Physical Chemistry B, 2008, 112, 16445-16454.	2.6	18
65	Catalytic Behavior of Cationic Hydridoruthenium(II) Complex, [RuH(NH3)(PMe3)4]+, in H2-Hydrogenation and Transfer Hydrogenation of Imines. Bulletin of the Chemical Society of Japan, 2008, 81, 1053-1061.	3.2	18
66	Stereoselective Formation of α-Alkylidene Cyclic Carbonates via Carboxylative Cyclization of Propargyl Alcohols in Supercritical Carbon Dioxide. Journal of Organic Chemistry, 2007, 72, 647-649.	3.2	144
67	Synthesis of Ruthenium(II) Complexes Containing Hydroxymethylphosphines and Their Catalytic Activities for Hydrogenation of Supercritical Carbon Dioxide. Inorganic Chemistry, 2007, 46, 5791-5797.	4.0	15
68	Raman spectral shifts of CO2 as measure of CO2-philicity of solutes in supercritical carbon dioxide. Journal of Supercritical Fluids, 2007, 40, 20-26.	3.2	21
69	Carboxylative cyclization of propargylamines with supercritical carbon dioxide. Green Chemistry, 2006, 8, 1019.	9.0	104
70	Spectrophotometric study on solubility of UO2(β-diketonato)2dmso complexes (β-diketonate=acetylacetonate, trifluoroacetylacetonate, hexafluoroacetylacetonate; dmso=dimethyl) Tj ETQqO	0 G. æBT /	Ovælock 101
71	Control of Thermoresponsive Behavior of Poly (urethane-amine)s Prepared by Copolymerization of Supercritical Carbon Dioxide and Aziridines. Kobunshi Ronbunshu, 2005, 62, 196-199.	0.2	7

A Highly Effective (Triphenyl phosphite)palladium Catalyst for a Cross?Coupling Reaction of Allylic Alcohols with Organoboronic Acids.. ChemInform, 2005, 36, no.

ΥΟSΗΙΗΙΤΟ ΚΑΥΑΚΙ

#	Article	IF	CITATIONS
73	Selective Oxidation Carbonylation of Amines to Oxamides and Ureas Catalyzed by Palladium Complexes ChemInform, 2005, 36, no.	0.0	Ο
74	Double stimuli-responsive behavior of aliphatic poly(urethane-amine)s derived from supercritical carbon dioxide. Chemical Communications, 2005, , 2268.	4.1	48
75	Aliphatic Poly(urethaneâ^'amine)s Synthesized by Copolymerization of Aziridines and Supercritical Carbon Dioxide. Macromolecules, 2005, 38, 6429-6434.	4.8	88
76	Synthesis of Thermoresponsive Polyurethane from 2-Methylaziridine and Supercritical Carbon Dioxide. Angewandte Chemie - International Edition, 2004, 43, 717-719.	13.8	129
77	13C NMR Spectroscopic Evaluation of the Affinity of Carbonyl Compounds for Carbon Dioxide under Supercritical Conditions. Angewandte Chemie - International Edition, 2004, 43, 3719-3722.	13.8	28
78	A Highly Effective (Triphenyl phosphite)palladium Catalyst for a Cross?Coupling Reaction of Allylic Alcohols with Organoboronic Acids. European Journal of Organic Chemistry, 2004, 2004, 4989-4993.	2.4	72
79	Halide-Free Dehydrative Allylation Using Allylic Alcohols Promoted by a Palladium—Triphenyl Phosphite Catalyst ChemInform, 2004, 35, no.	0.0	0
80	Halide-Free Dehydrative Allylation Using Allylic Alcohols Promoted by a Palladiumâ^'Triphenyl Phosphite Catalyst. Journal of Organic Chemistry, 2004, 69, 2595-2597.	3.2	182
81	Selective Oxidative Carbonylation of Amines to Oxamides and Ureas Catalyzed by Palladium Complexes. Bulletin of the Chemical Society of Japan, 2004, 77, 2237-2250.	3.2	41
82	Amphiphilic Resin-Supported Ruthenium(II) Complexes as Recyclable Catalysts for the Hydrogenation of Supercritical Carbon Dioxide. Advanced Synthesis and Catalysis, 2003, 345, 175-179.	4.3	63
83	Organic Syntheses in Supercritical Fluids Directed Toward Green Chemistry. ChemInform, 2003, 34, no.	0.0	0
84	1,1-Insertion into Metal–Carbon Bond. Current Methods in Inorganic Chemistry, 2003, 3, 373-409.	0.9	7
85	Organic Syntheses in Supercritical Fluids Directed toward Green Chemistry. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2003, 61, 472-483.	0.1	2
86	NMR Observation of Trialkylphosphite-Palladium(II) and Ruthenium(II) Complexes in Supercritical Carbon Dioxide. Chemistry Letters, 2002, 31, 424-425.	1.3	25
87	Water-Soluble Trialkylphosphine-Ruthenium(II) Complexes as Efficient Catalysts for Hydrogenation of Supercritical Carbon Dioxide. Chemistry Letters, 2001, 30, 1016-1017.	1.3	23
88	Experimental and theoretical studies on the course of CO insertion into Pt–C and Pd–C bonds in neutral and cationic complexes, [MR(Cl){P(CH3)3}2] and [MR{P(CH3)3}2(s)]+BF4– (M=Pt, Pd, R=CH3,) Tj ETC	2q D& 0 rg	BT2¦Overlock
89	Asymmetric Mukaiyama aldol reaction of a ketene silyl acetal of thioester catalyzed by a binaphthol–titanium complex in supercritical fluoroform. Tetrahedron Letters, 2000, 41, 1931-1934.	1.4	36

⁹⁰Highly efficient carbonylation reactions of organic halides in supercritical carbon dioxide. Progress
in Nuclear Energy, 2000, 37, 429-434.2.914

Υοςηιηίτο Καγακι

#	Article	IF	CITATIONS
91	Supercritical fluids as reaction media for molecular catalysis. Catalysis Surveys From Asia, 2000, 4, 39-50.	1.2	31
92	Enhanced product selectivity in the Mizoroki–Heck reaction using a supercritical carbon dioxide–liquid biphasic system. Chemical Communications, 2000, , 2245-2246.	4.1	20
93	An efficient carbonylation of aryl halides catalysed by palladium complexes with phosphite ligands in supercritical carbon dioxide. Chemical Communications, 1999, , 1235-1236.	4.1	38
94	Formation of a Palladalactone Complex by C–O Bond Cleavage of Diketene Promoted by a Zerovalent Palladium Complex. Chemistry Letters, 1999, 28, 685-686.	1.3	19
95	Synthesis and Reactivities of Organopalladium Complexes as Models for Active Species in Catalytic Reactions Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 1998, 56, 96-106.	0.1	3
96	Removal of a Palladium-Bound Tertiary Phosphine Ligand with Silver(I) Salts to Generate Cationic Monoorganopalladium(II) Complexes Having One Trimethylphosphine Ligand. Bulletin of the Chemical Society of Japan, 1997, 70, 1135-1140.	3.2	9
97	Synthesis and Properties of Dimethyl- and Monomethylbis(phosphite)palladium(II) Complexes. Bulletin of the Chemical Society of Japan, 1997, 70, 1141-1147.	3.2	9
98	Comparison of the Reactivities of Neutral and Cationic Organopalladium Complexes toward CO, Isocyanides, and Olefins. Bulletin of the Chemical Society of Japan, 1997, 70, 917-927.	3.2	53
99	Reactivities of Neutral and Cationic Organopalladium Complexes. Chemistry Letters, 1995, 24, 1089-1090.	1.3	11
100	Synthesis and Thermolysis Behavior of Monoethylpalladium Complexes, EtPd(X)(PMe3)2 (X =) Tj ETQq0 0 0 rgBT	Overlock	10 Tf 50 382

Remarkable Rate Enhancement in CO Insertion into Pd-C Bond by Generating Cationic Organopalladium Complexes [PdR(s)L2]+BF4â^'(R = Alkyl Group, s = Acetone, L = Phosphine Ligands) from Neutral 1.3 7 Monoorganopalladium Complexes [PdR(X)L2] (X = Halide). Chemistry Letters, 1994, 23, 2171-2174.