Kyung-Rok Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4638655/publications.pdf

Version: 2024-02-01

44 papers

1,965 citations

304743 22 h-index 276875
41
g-index

46 all docs

46 docs citations

46 times ranked

3630 citing authors

#	Article	IF	CITATIONS
1	Genetic Inactivation of CD33 in Hematopoietic Stem Cells to Enable CAR T Cell Immunotherapy for Acute Myeloid Leukemia. Cell, 2018, 173, 1439-1453.e19.	28.9	323
2	Human Umbilical Cord Blood Mesenchymal Stem Cells Reduce Colitis in Mice by Activating NOD2 Signaling to COX2. Gastroenterology, 2013, 145, 1392-1403.e8.	1.3	159
3	Human Umbilical Cord Blood Mesenchymal Stem Cell-Derived PGE2 and TGF-β1 Alleviate Atopic Dermatitis by Reducing Mast Cell Degranulation. Stem Cells, 2015, 33, 1254-1266.	3.2	139
4	CD49f Enhances Multipotency and Maintains Stemness Through the Direct Regulation of OCT4 and SOX2. Stem Cells, 2012, 30, 876-887.	3.2	129
5	Rapid and Efficient Direct Conversion of Human Adult Somatic Cells into Neural Stem Cells by HMGA2/let-7b. Cell Reports, 2015, 10, 441-452.	6.4	107
6	Isolation and characterization of canine umbilical cord blood-derived mesenchymal stem cells. Journal of Veterinary Science, 2009, 10, 181.	1.3	98
7	Aging-Related Genes in Mesenchymal Stem Cells: A Mini-Review. Gerontology, 2013, 59, 557-563.	2.8	87
8	Therapeutic Features and Updated Clinical Trials of Mesenchymal Stem Cell (MSC)-Derived Exosomes. Journal of Clinical Medicine, 2021, 10, 711.	2.4	84
9	PGE2 maintains self-renewal of human adult stem cells via EP2-mediated autocrine signaling and its production is regulated by cell-to-cell contact. Scientific Reports, 2016, 6, 26298.	3.3	69
10	MicroRNA-141-3p plays a role in human mesenchymal stem cell aging by directly targeting ZMPSTE24. Journal of Cell Science, 2013, 126, 5422-31.	2.0	63
11	A p38 MAPK-Mediated Alteration of COX-2/PGE2 Regulates Immunomodulatory Properties in Human Mesenchymal Stem Cell Aging. PLoS ONE, 2014, 9, e102426.	2.5	58
12	HMGA2 regulates the in vitro aging and proliferation of human umbilical cord blood-derived stromal cells through the mTOR/p70S6K signaling pathway. Stem Cell Research, 2013, 10, 156-165.	0.7	52
13	miR-543 and miR-590-3p regulate human mesenchymal stem cell aging via direct targeting of AIMP3/p18. Age, 2014, 36, 9724.	3.0	48
14	Human umbilical cord blood mesenchymal stem cell-derived extracellular matrix prohibits metastatic cancer cell MDA-MB-231 proliferation. Cancer Letters, 2010, 296, 178-185.	7.2	45
15	Gene Editing of Human Hematopoietic Stem and Progenitor Cells: Promise and Potential Hurdles. Human Gene Therapy, 2016, 27, 729-740.	2.7	42
16	Impact of Mesenchymal Stem Cell Senescence on Inflammaging. BMB Reports, 2020, 53, 65-73.	2.4	42
17	The impact of aging on primate hematopoiesis as interrogated by clonal tracking. Blood, 2018, 131, 1195-1205.	1.4	39
18	Growth arrest and forced differentiation of human primary glioblastoma multiforme by a novel small molecule. Scientific Reports, 2014, 4, 5546.	3.3	38

#	Article	IF	CITATIONS
19	Excessive microglial activation aggravates olfactory dysfunction by impeding the survival of newborn neurons in the olfactory bulb of Niemann–Pick disease type C1 mice. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 2193-2203.	3.8	31
20	DNA methyltransferase inhibition accelerates the immunomodulation and migration of human mesenchymal stem cells. Scientific Reports, 2015, 5, 8020.	3.3	31
21	GATA4-dependent regulation of the secretory phenotype via MCP-1 underlies lamin A-mediated human mesenchymal stem cell aging. Experimental and Molecular Medicine, 2018, 50, 1-12.	7.7	24
22	BMI1 inhibits senescence and enhances the immunomodulatory properties of human mesenchymal stem cells via the direct suppression of MKP-1/DUSP1. Aging, 2016, 8, 1670-1689.	3.1	24
23	Generation of patient specific human neural stem cells from Niemann-Pick disease type C patient-derived fibroblasts. Oncotarget, 2017, 8, 85428-85441.	1.8	22
24	bFGF enhances the IGFs-mediated pluripotent and differentiation potentials in multipotent stem cells. Growth Factors, 2009, 27, 425-437.	1.7	21
25	miR-410 Inhibition Induces RPE Differentiation of Amniotic Epithelial Stem Cells via Overexpression of OTX2 and RPE65. Stem Cell Reviews and Reports, 2015, 11, 376-386.	5.6	20
26	Anticancer Effects of Propionic Acid Inducing Cell Death in Cervical Cancer Cells. Molecules, 2021, 26, 4951.	3.8	20
27	CRISPR/Cas9 PIG-A gene editing in nonhuman primate model demonstrates no intrinsic clonal expansion of PNH HSPCs. Blood, 2019, 133, 2542-2545.	1.4	17
28	Prediction and validation of hematopoietic stem and progenitor cell off-target editing in transplanted rhesus macaques. Molecular Therapy, 2022, 30, 209-222.	8.2	17
29	The effects of hedgehog on RNA binding protein Msi1 during the osteogenic differentiation of human cord blood-derived mesenchymal stem cells. Bone, 2013, 56, 416-425.	2.9	15
30	Xeno-Free Condition Enhances Therapeutic Functions of Human Wharton's Jelly-Derived Mesenchymal Stem Cells against Experimental Colitis by Upregulated Indoleamine 2,3-Dioxygenase Activity. Journal of Clinical Medicine, 2020, 9, 2913.	2.4	15
31	SMARCA4 oncogenic potential via IRAK1 enhancer to activate Gankyrin and AKR1B10 in liver cancer. Oncogene, 2021, 40, 4652-4662.	5. 9	13
32	Direct Conversion of Human Umbilical Cord Blood into Induced Neural Stem Cells with SOX2 and HMGA2. International Journal of Stem Cells, 2017, 10, 227-234.	1.8	13
33	A macaque clonal hematopoiesis model demonstrates expansion of TET2-disrupted clones and utility forÂtesting interventions. Blood, 2022, 140, 1774-1789.	1.4	13
34	Donepezil Enhances Purkinje Cell Survival and Alleviates Motor Dysfunction by Inhibiting Cholesterol Synthesis in a Murine Model of Niemann Pick Disease Type C. Journal of Neuropathology and Experimental Neurology, 2014, 73, 234-243.	1.7	11
35	Extracellular Vesicles from Thapsigargin-Treated Mesenchymal Stem Cells Ameliorated Experimental Colitis via Enhanced Immunomodulatory Properties. Biomedicines, 2021, 9, 209.	3.2	11
36	564. The Cytotoxic Effect of RNA-Guided Endonuclease Cas9 on Human Hematopoietic Stem and Progenitor Cells (HSPCs). Molecular Therapy, 2016, 24, S225-S226.	8.2	9

#	Article	IF	CITATIONS
37	Barcoding of Macaque Hematopoietic Stem and Progenitor Cells: A Robust Platform to Assess Vector Genotoxicity. Molecular Therapy - Methods and Clinical Development, 2018, 11, 143-154.	4.1	9
38	MicroRNA-141-3p plays a role in human mesenchymal stem cell aging by directly targeting ZMPSTE24. Journal of Cell Science, 2014, 127, 475-475.	2.0	2
39	Macaque CRISPR/Cas9 Age-Related Clonal Hematopoiesis Model Demonstrates Expansion of TET2-Mutated Clones and Applicability for Testing Mitigation Approaches. Blood, 2020, 136, 27-28.	1.4	2
40	Comparative engraftment and clonality of macaque HSPCs expanded on human umbilical vein endothelial cells versus non-expanded cells. Molecular Therapy - Methods and Clinical Development, 2021, 20, 703-715.	4.1	1
41	Diesel Exhaust Particles Impair Therapeutic Effect of Human Wharton's Jelly-Derived Mesenchymal Stem Cells against Experimental Colitis through ROS/ERK/cFos Signaling Pathway. International Journal of Stem Cells, 2022, 15, 203-216.	1.8	1
42	The Impact of Aging of Hematopoietic Stem and Progenitor Cells (HSPCs) in Non-Human Primates As Interrogated By Genetic Barcode Clonal Tracking. Blood, 2015, 126, 1151-1151.	1.4	0
43	Modeling Human Paroxysmal Nocturnal Hemoglobinuria Via CRISPR/Cas9 HSPC Gene Editing in Non-Human Primate. Blood, 2018, 132, 1309-1309.	1.4	0
44	3154 – RHESUS MACAQUES AS NATURAL MODELS FOR AGE-RELATED CLONAL HEMATOPOIESIS. Experimental Hematology, 2020, 88, S86.	0.4	0