
Sebastien Deshayes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4638459/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cell-penetrating peptides: tools for intracellular delivery of therapeutics. Cellular and Molecular Life Sciences, 2005, 62, 1839-1849.	2.4	454
2	Cellâ€penetrating peptides: from molecular mechanisms to therapeutics. Biology of the Cell, 2008, 100, 201-217.	0.7	312
3	Secondary structure of cell-penetrating peptides controls membrane interaction and insertion. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 1119-1128.	1.4	264
4	Delivery of therapeutic oligonucleotides with cell penetrating peptides. Advanced Drug Delivery Reviews, 2015, 87, 52-67.	6.6	217
5	Insight into the Mechanism of Internalization of the Cell-Penetrating Carrier Peptide Pep-1 through Conformational Analysis. Biochemistry, 2004, 43, 1449-1457.	1.2	183
6	Delivery of proteins and nucleic acids using a non-covalent peptide-based strategy. Advanced Drug Delivery Reviews, 2008, 60, 537-547.	6.6	169
7	A non-covalent peptide-based strategy for protein and peptide nucleic acid transduction. Biochimica Et Biophysica Acta - Biomembranes, 2006, 1758, 384-393.	1.4	160
8	On the mechanism of non-endosomial peptide-mediated cellular delivery of nucleic acids. Biochimica Et Biophysica Acta - Biomembranes, 2004, 1667, 141-147.	1.4	105
9	Primary Amphipathic Cell-Penetrating Peptides:  Structural Requirements and Interactions with Model Membranes. Biochemistry, 2004, 43, 7698-7706.	1.2	103
10	Peptide-Based Nanoparticle for Ex Vivo and In Vivo Dug Delivery. Current Pharmaceutical Design, 2008, 14, 3656-3665.	0.9	92
11	Direct Translocation as Major Cellular Uptake for CADY Self-Assembling Peptide-Based Nanoparticles. PLoS ONE, 2011, 6, e25924.	1.1	89
12	Insight into the Cellular Uptake Mechanism of a Secondary Amphipathic Cell-Penetrating Peptide for siRNA Delivery. Biochemistry, 2010, 49, 3393-3402.	1.2	73
13	Prediction of peptide structure: How far are we?. Proteins: Structure, Function and Bioinformatics, 2006, 65, 889-897.	1.5	64
14	Structural polymorphism of non-covalent peptide-based delivery systems: Highway to cellular uptake. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 2304-2314.	1.4	62
15	A retro-inverso cell-penetrating peptide for siRNA delivery. Journal of Nanobiotechnology, 2017, 15, 34.	4.2	55
16	Formation of transmembrane ionic channels of primary amphipathic cell-penetrating peptides. Consequences on the mechanism of cell penetration. Biochimica Et Biophysica Acta - Biomembranes, 2006, 1758, 1846-1851.	1.4	53
17	Interactions of amphipathic CPPs with model membranes. Biochimica Et Biophysica Acta - Biomembranes, 2006, 1758, 328-335.	1.4	39
18	PEGylation rate influences peptide-based nanoparticles mediated siRNA delivery in vitro and in vivo. Journal of Controlled Release, 2017, 256, 79-91.	4.8	38

SEBASTIEN DESHAYES

#	Article	IF	CITATIONS
19	Peptide-Based Nanoparticles to Rapidly and Efficiently "Wrap 'n Roll―siRNA into Cells. Bioconjugate Chemistry, 2019, 30, 592-603.	1.8	37
20	Structural polymorphism of two CPP: An important parameter of activity. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 1197-1205.	1.4	35
21	Selfâ€Assembling Peptideâ€Based Nanoparticles for siRNA Delivery in Primary Cell Lines. Small, 2012, 8, 2184-2188.	5.2	34
22	Optimisation of vectorisation property: A comparative study for a secondary amphipathic peptide. International Journal of Pharmaceutics, 2016, 509, 71-84.	2.6	31
23	Peptide-Based Nanoparticles for Therapeutic Nucleic Acid Delivery. Biomedicines, 2021, 9, 583.	1.4	31
24	Interactions of Primary Amphipathic Cell Penetrating Peptides with Model Membranes: Consequences on the Mechanisms of Intracellular Delivery of Therapeutics. Current Pharmaceutical Design, 2005, 11, 3629-3638.	0.9	27
25	Deciphering the internalization mechanism of WRAP:siRNA nanoparticles. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183252.	1.4	23
26	Interaction of Primary Amphipathic Cell-Penetrating Peptides with Phospholipid-Supported Monolayers. Langmuir, 2004, 20, 9255-9261.	1.6	22
27	Everything You Always Wanted to Know About CADY-Mediated siRNA Delivery* (* But Afraid to Ask). Current Pharmaceutical Design, 2013, 19, 2869-2877.	0.9	22
28	Interactions of amphipathic carrier peptides with membrane components in relation with their ability to deliver therapeutics. Journal of Peptide Science, 2006, 12, 758-765.	0.8	21
29	UA62784 Is a Cytotoxic Inhibitor of Microtubules, not CENP-E. Chemistry and Biology, 2011, 18, 631-641.	6.2	20
30	Interactions of Amphipathic CPPs with Model Membranes. Methods in Molecular Biology, 2011, 683, 41-56.	0.4	18
31	Fluorescence Technologies for Monitoring Interactions Between Biological Molecules In Vitro. Progress in Molecular Biology and Translational Science, 2013, 113, 109-143.	0.9	14
32	Modeling of non-covalent complexes of the cell-penetrating peptide CADY and its siRNA cargo. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 499-509.	1.4	14
33	How to evaluate the cellular uptake of CPPs with fluorescence techniques: Dissecting methodological pitfalls associated to tryptophan-rich peptides. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 1533-1545.	1.4	13
34	PepLook: An innovative in silico tool for determination of structure, polymorphism and stability of peptides. Advances in Experimental Medicine and Biology, 2009, 611, 459-460.	0.8	10
35	In Vivo Follow-Up of Gene Inhibition in Solid Tumors Using Peptide-Based Nanoparticles for siRNA Delivery. Pharmaceutics, 2021, 13, 749.	2.0	7
36	Peptide-Mediated Delivery of Nucleic Acids into Mammalian Cells. Methods in Molecular Biology, 2007, 386, 299-308.	0.4	6

SEBASTIEN DESHAYES

#	Article	IF	CITATIONS
37	WRAP-based nanoparticles for siRNA delivery: a SAR study and a comparison with lipid-based transfection reagents. Journal of Nanobiotechnology, 2021, 19, 236.	4.2	6
38	Fluorescent Leakage Assay to Investigate Membrane Destabilization by Cell-Penetrating Peptide. Journal of Visualized Experiments, 2020, , .	0.2	3
39	Tips and Tools to Understand Direct Membrane Translocation of siRNA-Loaded WRAP-Based Nanoparticles. Methods in Molecular Biology, 2022, 2383, 475-490.	0.4	1
40	R97: Nanoparticules peptidiques pour la délivrance de drogues. Bulletin Du Cancer, 2010, 97, S54.	0.6	0
41	R98 - Oral: Nanoparticules peptidiques pour la vectorisation ciblée in vivo de siRNA thérapeutiques. Bulletin Du Cancer, 2010, 97, S54.	0.6	0