
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4638289/publications.pdf Version: 2024-02-01

KAZUHIDE HENO

#	Article	IF	CITATIONS
1	Application of Ionic Liquids to Energy Storage and Conversion Materials and Devices. Chemical Reviews, 2017, 117, 7190-7239.	47.7	1,214
2	Recent Advances in Electrolytes for Lithium–Sulfur Batteries. Advanced Energy Materials, 2015, 5, 1500117.	19.5	508
3	lonicity in ionic liquids: correlation with ionic structure and physicochemical properties. Physical Chemistry Chemical Physics, 2010, 12, 1649.	2.8	477
4	Solvate Ionic Liquid Electrolyte for Li–S Batteries. Journal of the Electrochemical Society, 2013, 160, A1304-A1310.	2.9	421
5	Glyme–Lithium Salt Equimolar Molten Mixtures: Concentrated Solutions or Solvate Ionic Liquids?. Journal of Physical Chemistry B, 2012, 116, 11323-11331.	2.6	348
6	lonic Liquid Electrolytes for Lithium–Sulfur Batteries. Journal of Physical Chemistry C, 2013, 117, 20531-20541.	3.1	259
7	Criteria for solvate ionic liquids. Physical Chemistry Chemical Physics, 2014, 16, 8761.	2.8	240
8	Li ⁺ solvation in glyme–Li salt solvate ionic liquids. Physical Chemistry Chemical Physics, 2015, 17, 8248-8257.	2.8	222
9	Nanocomposite Ion Gels Based on Silica Nanoparticles and an Ionic Liquid: Ionic Transport, Viscoelastic Properties, and Microstructure. Journal of Physical Chemistry B, 2008, 112, 9013-9019.	2.6	200
10	Chelate Effects in Glyme/Lithium Bis(trifluoromethanesulfonyl)amide Solvate Ionic Liquids. I. Stability of Solvate Cations and Correlation with Electrolyte Properties. Journal of Physical Chemistry B, 2014, 118, 5144-5153.	2.6	194
11	Resonance shear measurement of nanoconfined ionic liquids. Physical Chemistry Chemical Physics, 2010, 12, 4066.	2.8	186
12	Solvent Effect of Room Temperature Ionic Liquids on Electrochemical Reactions in Lithium–Sulfur Batteries. Journal of Physical Chemistry C, 2013, 117, 4431-4440.	3.1	182
13	Upper Limit of Nitrogen Content in Carbon Materials. Angewandte Chemie - International Edition, 2015, 54, 1302-1306.	13.8	168
14	Colloidal Stability of Bare and Polymer-Grafted Silica Nanoparticles in Ionic Liquids. Langmuir, 2008, 24, 5253-5259.	3.5	167
15	Anionic Effects on Solvate Ionic Liquid Electrolytes in Rechargeable Lithium–Sulfur Batteries. Journal of Physical Chemistry C, 2013, 117, 20509-20516.	3.1	166
16	Direct Evidence for Li Ion Hopping Conduction in Highly Concentrated Sulfolane-Based Liquid Electrolytes. Journal of Physical Chemistry B, 2018, 122, 10736-10745.	2.6	165
17	Mechanism of Li Ion Desolvation at the Interface of Graphite Electrode and Glyme–Li Salt Solvate Ionic Liquids. Journal of Physical Chemistry C, 2014, 118, 20246-20256.	3.1	155
18	Sulfolane-Based Highly Concentrated Electrolytes of Lithium Bis(trifluoromethanesulfonyl)amide: Ionic Transport, Li-Ion Coordination, and Li–S Battery Performance. Journal of Physical Chemistry C, 2019, 123, 14229-14238.	3.1	138

#	Article	IF	CITATIONS
19	Chelate Effects in Glyme/Lithium Bis(trifluoromethanesulfonyl)amide Solvate Ionic Liquids, Part 2: Importance of Solvate-Structure Stability for Electrolytes of Lithium Batteries. Journal of Physical Chemistry C, 2014, 118, 17362-17373.	3.1	137
20	From Colloidal Stability in Ionic Liquids to Advanced Soft Materials Using Unique Media. Langmuir, 2011, 27, 9105-9115.	3.5	136
21	Solvent Activity in Electrolyte Solutions Controls Electrochemical Reactions in Li-Ion and Li-Sulfur Batteries. Journal of Physical Chemistry C, 2015, 119, 3957-3970.	3.1	135
22	Colloidal Interaction in Ionic Liquids: Effects of Ionic Structures and Surface Chemistry on Rheology of Silica Colloidal Dispersions. Langmuir, 2009, 25, 825-831.	3.5	122
23	Li ⁺ Solvation and Ionic Transport in Lithium Solvate Ionic Liquids Diluted by Molecular Solvents. Journal of Physical Chemistry C, 2016, 120, 15792-15802.	3.1	114
24	A soft glassy colloidal array in ionic liquid, which exhibits homogeneous, non-brilliant and angle-independent structural colours. Chemical Communications, 2009, , 3603.	4.1	100
25	Effect of Ionic Size on Solvate Stability of Glyme-Based Solvate Ionic Liquids. Journal of Physical Chemistry B, 2015, 119, 1523-1534.	2.6	92
26	Thermal and Electrochemical Stability of Tetraglyme–Magnesium Bis(trifluoromethanesulfonyl)amide Complex: Electric Field Effect of Divalent Cation on Solvate Stability. Journal of Physical Chemistry C, 2016, 120, 1353-1365.	3.1	88
27	Structures of [Li(glyme)] ⁺ complexes and their interactions with anions in equimolar mixtures of glymes and Li[TFSA]: analysis by molecular dynamics simulations. Physical Chemistry Chemical Physics, 2015, 17, 126-129.	2.8	87
28	From Ionic Liquids to Solvate Ionic Liquids: Challenges and Opportunities for Next Generation Battery Electrolytes. Bulletin of the Chemical Society of Japan, 2018, 91, 1660-1682.	3.2	85
29	Li ⁺ Local Structure in Hydrofluoroether Diluted Li-Glyme Solvate Ionic Liquid. Journal of Physical Chemistry B, 2016, 120, 3378-3387.	2.6	81
30	Gelation of Solvate Ionic Liquid by Self-Assembly of Block Copolymer and Characterization as Polymer Electrolyte. Macromolecules, 2014, 47, 6009-6016.	4.8	78
31	Structural and aggregate analyses of (Li salt + glyme) mixtures: the complex nature of solvate ionic liquids. Physical Chemistry Chemical Physics, 2015, 17, 22321-22335.	2.8	78
32	Li-ion hopping conduction in highly concentrated lithium bis(fluorosulfonyl)amide/dinitrile liquid electrolytes. Physical Chemistry Chemical Physics, 2019, 21, 9759-9768.	2.8	77
33	Proticâ€Saltâ€Derived Nitrogen/Sulfurâ€Codoped Mesoporous Carbon for the Oxygen Reduction Reaction and Supercapacitors. ChemSusChem, 2015, 8, 1608-1617.	6.8	74
34	One-pot pyrolysis of lithium sulfate and graphene nanoplatelet aggregates: in situ formed Li ₂ S/graphene composite for lithium–sulfur batteries. Nanoscale, 2015, 7, 14385-14392.	5.6	73
35	Li+ Ion Transport in Polymer Electrolytes Based on a Glyme-Li Salt Solvate Ionic Liquid. Electrochimica Acta, 2015, 175, 5-12.	5.2	70
36	Oxygen Reduction Reaction in Highly Concentrated Electrolyte Solutions of Lithium Bis(trifluoromethanesulfonyl)amide/Dimethyl Sulfoxide. Journal of Physical Chemistry C, 2017, 121, 9162-9172.	3.1	70

#	Article	IF	CITATIONS
37	Soft Glassy Colloidal Arrays in an Ionic Liquid: Colloidal Glass Transition, Ionic Transport, and Structural Color in Relation to Microstructure. Journal of Physical Chemistry B, 2010, 114, 13095-13103.	2.6	67
38	Hydrogen-bonding supramolecular protic salt as an "all-in-one―precursor for nitrogen-doped mesoporous carbons for CO2 adsorption. Nano Energy, 2015, 13, 376-386.	16.0	64
39	Phase Diagrams and Solvate Structures of Binary Mixtures of Glymes and Na Salts. Journal of Physical Chemistry B, 2013, 117, 15072-15085.	2.6	63
40	Enhanced performance of sulfone-based electrolytes at lithium ion battery electrodes, including the LiNi0.5Mn1.5O4 high voltage cathode. Journal of Power Sources, 2014, 262, 123-128.	7.8	63
41	Nanostructure of [Li(G4)] TFSI and [Li(G4)] NO ₃ solvate ionic liquids at HOPG and Au(111) electrode interfaces as a function of potential. Physical Chemistry Chemical Physics, 2015, 17, 325-333.	2.8	61
42	Physicochemical properties of pentaglyme–sodium bis(trifluoromethanesulfonyl)amide solvate ionic liquid. Physical Chemistry Chemical Physics, 2014, 16, 11737-11746.	2.8	60
43	Polymer Electrolytes Containing Solvate Ionic Liquids: A New Approach To Achieve High Ionic Conductivity, Thermal Stability, and a Wide Potential Window. Chemistry of Materials, 2018, 30, 252-261.	6.7	60
44	Electrochromism based on structural colour changes in a polyelectrolyte gel. Journal of Materials Chemistry, 2009, 19, 4778.	6.7	57
45	Photoisomerization-Induced Tunable LCST Phase Separation of Azobenzene-Containing Polymers in an Ionic Liquid. Langmuir, 2009, 25, 8845-8848.	3.5	55
46	Lithium Salt Solutions in Mixed Sulfone and Sulfone-Carbonate Solvents: A Walden Plot Analysis of the Maximally Conductive Compositions. Journal of Physical Chemistry C, 2012, 116, 23915-23920.	3.1	53
47	Solvent effects on Li ion transference number and dynamic ion correlations in glyme- and sulfolane-based molten Li salt solvates. Physical Chemistry Chemical Physics, 2020, 22, 15214-15221.	2.8	53
48	Molecularly Tunable Polyanions for Single-Ion Conductors and Poly(solvate ionic liquids). Chemistry of Materials, 2021, 33, 524-534.	6.7	53
49	Thermosensitive, Soft Glassy and Structural Colored Colloidal Array in Ionic Liquid: Colloidal Glass to Gel Transition. Langmuir, 2010, 26, 18031-18038.	3.5	52
50	Effects of compatibility of polymer binders with solvate ionic liquid electrolytes on discharge and charge reactions of lithium-sulfur batteries. Journal of Power Sources, 2016, 307, 746-752.	7.8	52
51	Stability of Glyme Solvate Ionic Liquid as an Electrolyte for Rechargeable Liâ^'O ₂ Batteries. ACS Applied Materials & Interfaces, 2017, 9, 6014-6021.	8.0	52
52	Effects of Polysulfide Solubility and Li Ion Transport on Performance of Li–S Batteries Using Sparingly Solvating Electrolytes. Journal of the Electrochemical Society, 2020, 167, 070531.	2.9	52
53	Electrolyte Composition in Li/O ₂ Batteries with Lil Redox Mediators: Solvation Effects on Redox Potentials and Implications for Redox Shuttling. Journal of Physical Chemistry C, 2018, 122, 1522-1534.	3.1	51
54	Advanced Materials Based on Polymers and Ionic Liquids. Chemical Record, 2018, 18, 391-409.	5.8	51

KAZUHIDE UENO

#	Article	IF	CITATIONS
55	Effect of the cation on the stability of cation–glyme complexes and their interactions with the [TFSA] ^{â^'} anion. Physical Chemistry Chemical Physics, 2017, 19, 18262-18272.	2.8	49
56	Thermosensitive Self-Assembly of Diblock Copolymers with Lower Critical Micellization Temperatures in an Ionic Liquid. Macromolecules, 2009, 42, 6239-6244.	4.8	47
57	Solubility of Poly(methyl methacrylate) in Ionic Liquids in Relation to Solvent Parameters. Langmuir, 2014, 30, 3228-3235.	3.5	47
58	A Design Approach to Lithium-Ion Battery Electrolyte Based on Diluted Solvate Ionic Liquids. Journal of the Electrochemical Society, 2017, 164, A6088-A6094.	2.9	45
59	Li ⁺ Local Structure in Li–Tetraglyme Solvate Ionic Liquid Revealed by Neutron Total Scattering Experiments with the ^{6/7} Li Isotopic Substitution Technique. Journal of Physical Chemistry Letters, 2016, 7, 2832-2837.	4.6	44
60	Key factor governing the physicochemical properties and extent of proton transfer in protic ionic liquids: Δp <i>K</i> _a or chemical structure?. Physical Chemistry Chemical Physics, 2019, 21, 418-426.	2.8	42
61	Graphite–Lithium Sulfide Battery with a Single-Phase Sparingly Solvating Electrolyte. ACS Energy Letters, 2020, 5, 1-7.	17.4	41
62	EQCM Measurement of Deposition and Dissolution of Lithium in Glyme-Li Salt Molten Complex. Journal of the Electrochemical Society, 2013, 160, A1529-A1533.	2.9	38
63	Protic Ionic Liquids Based on Decahydroisoquinoline: Lost Superfragility and Ionicity-Fragility Correlation. Journal of Physical Chemistry B, 2012, 116, 63-70.	2.6	37
64	One-step, template-free synthesis of highly porous nitrogen/sulfur-codoped carbons from a single protic salt and their application to CO ₂ capture. Journal of Materials Chemistry A, 2015, 3, 17849-17857.	10.3	36
65	lonic transport in highly concentrated lithium bis(fluorosulfonyl)amide electrolytes with keto ester solvents: structural implications for ion hopping conduction in liquid electrolytes. Physical Chemistry Chemical Physics, 2019, 21, 5097-5105.	2.8	35
66	Glyme–Sodium Bis(fluorosulfonyl)amide Complex Electrolytes for Sodium Ion Batteries. Journal of Physical Chemistry C, 2018, 122, 16589-16599.	3.1	34
67	Long-Range Ion-Ordering in Salt-Concentrated Lithium-Ion Battery Electrolytes: A Combined High-Energy X-ray Total Scattering and Molecular Dynamics Simulation Study. Journal of Physical Chemistry C, 2017, 121, 22720-22726.	3.1	32
68	Solvate electrolytes for Li and Na batteries: structures, transport properties, and electrochemistry. Physical Chemistry Chemical Physics, 2021, 23, 21419-21436.	2.8	32
69	Molecular dynamics study of thermodynamic stability and dynamics of [Li(glyme)]+ complex in lithium-glyme solvate ionic liquids. Journal of Chemical Physics, 2018, 148, 193809.	3.0	31
70	Soft is strong. Nature, 2009, 462, 45-46.	27.8	30
71	Dissociation and Diffusion of Glyme-Sodium Bis(trifluoromethanesulfonyl)amide Complexes in Hydrofluoroether-Based Electrolytes for Sodium Batteries. Journal of Physical Chemistry C, 2016, 120, 23339-23350.	3.1	30
72	Anion effects on Li ion transference number and dynamic ion correlations in glyme–Li salt equimolar mixtures. Physical Chemistry Chemical Physics, 2021, 23, 2622-2629.	2.8	30

#	Article	IF	CITATIONS
73	Solvate Ionic Liquid, [Li(triglyme)1][NTf2], as Electrolyte for Rechargeable Li–Air Battery: Discharge Depth and Reversibility. Chemistry Letters, 2013, 42, 1053-1055.	1.3	29
74	High Conductivity, and "Dry―Proton Motion, in Guanidinium Salt Melts and Binary Solutions. Journal of Physical Chemistry B, 2011, 115, 13467-13472.	2.6	28
75	Structural Effects of Solvents on Li-Ion-Hopping Conduction in Highly Concentrated LiBF ₄ /Sulfone Solutions. Journal of Physical Chemistry B, 2021, 125, 6600-6608.	2.6	28
76	Pentaglyme–K salt binary mixtures: phase behavior, solvate structures, and physicochemical properties. Physical Chemistry Chemical Physics, 2015, 17, 2838-2849.	2.8	27
77	Suppression of Water Absorption by Molecular Design of Ionic Liquid Electrolyte for Li–Air Battery. Advanced Energy Materials, 2017, 7, 1601753.	19.5	27
78	Micelle Structure of Novel Diblock Polyethers in Water and Two Protic Ionic Liquids (EAN and PAN). Macromolecules, 2015, 48, 1843-1851.	4.8	25
79	Microscopic insights into ion gel dynamics using neutron spectroscopy. Soft Matter, 2012, 8, 7888.	2.7	24
80	Optimization of Pore Structure of Cathodic Carbon Supports for Solvate Ionic Liquid Electrolytes Based Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2016, 8, 27803-27813.	8.0	24
81	Understanding the Reductive Decomposition of Highly Concentrated Li Salt/Sulfolane Electrolytes during Li Deposition and Dissolution. ACS Applied Energy Materials, 2021, 4, 1851-1859.	5.1	24
82	Protic ionic liquids with primary alkylamine-derived cations: the dominance of hydrogen bonding on observed physicochemical properties. RSC Advances, 2018, 8, 9790-9794.	3.6	23
83	Enhanced Electrochemical Stability of Molten Li Salt Hydrate Electrolytes by the Addition of Divalent Cations. Journal of Physical Chemistry C, 2018, 122, 20167-20175.	3.1	23
84	High Transference Number of Na Ion in Liquid-State Sulfolane Solvates of Sodium Bis(fluorosulfonyl)amide. Journal of Physical Chemistry C, 2020, 124, 4459-4469.	3.1	23
85	Liquid Structures and Transport Properties of Lithium Bis(fluorosulfonyl)amide/Glyme Solvate Ionic Liquids for Lithium Batteries. Australian Journal of Chemistry, 2019, 72, 70.	0.9	21
86	Steric effect on Li ⁺ coordination and transport properties in polyoxetane-based polymer electrolytes bearing nitrile groups. RSC Advances, 2017, 7, 37975-37982.	3.6	20
87	Highly concentrated LiN(SO2CF3)2/dinitrile electrolytes: Liquid structures, transport properties, and electrochemistry. Journal of Chemical Physics, 2020, 152, 104502.	3.0	20
88	Role of polar side chains in Li ⁺ coordination and transport properties of polyoxetane-based polymer electrolytes. Physical Chemistry Chemical Physics, 2017, 19, 5185-5194.	2.8	19
89	Eutectic Electrolytes Composed of LiN(SO ₂ F) ₂ and Sulfones for Li-lon Batteries. Journal of Physical Chemistry C, 2022, 126, 10024-10034.	3.1	18
90	Lithium-tin Alloy/Sulfur Battery with a Solvate Ionic Liquid Electrolyte. Electrochemistry, 2015, 83, 914-917.	1.4	17

#	Article	IF	CITATIONS
91	Soluble sulfur-based copolymers prepared from elemental sulfur and alkenyl alcohol as positive active material for lithium-sulfur batteries. Polymer, 2017, 117, 225-230.	3.8	17
92	Structures and Electrochemistry of γ-Butyrolactone Solvates of Na Salts. Journal of Physical Chemistry C, 2020, 124, 15800-15811.	3.1	17
93	Heat Capacities and Glass Transitions of Ion Gels. Journal of Physical Chemistry B, 2012, 116, 10935-10940.	2.6	16
94	Polymer electrolytes based on a homogeneous poly(ethylene glycol) network and their application to polymer actuators. Electrochimica Acta, 2019, 298, 866-873.	5.2	16
95	Speciation Analysis and Thermodynamic Criteria of Solvated Ionic Liquids: Ionic Liquids or Superconcentrated Solutions?. Journal of Physical Chemistry Letters, 2020, 11, 4517-4523.	4.6	16
96	Towards practical cells: combined use of titanium black as a cathode additive and sparingly solvating electrolyte for high-energy-density lithium–sulfur batteries. Sustainable Energy and Fuels, 2021, 5, 1821-1831.	4.9	15
97	On the Decoupling of Relaxation Modes in a Molecular Liquid Caused by Isothermal Introduction of 2 nm Structural Inhomogeneities. Journal of Physical Chemistry B, 2011, 115, 13994-13999.	2.6	14
98	Effect of Variation in Anion Type and Glyme Length on the Nanostructure of the Solvate Ionic Liquid/Graphite Interface as a Function of Potential. Journal of Physical Chemistry C, 2017, 121, 15728-15734.	3.1	14
99	Soft materials based on colloidal self-assembly in ionic liquids. Polymer Journal, 2018, 50, 951-958.	2.7	14
100	Microphase-separated structures of ion gels consisting of ABA-type block copolymers and an ionic liquid: A key to escape from the trade-off between mechanical and transport properties. Polymer, 2020, 206, 122849.	3.8	14
101	Liquid‧tate Optoelectronics Using Liquid Metal. Advanced Electronic Materials, 2020, 6, 1901135.	5.1	14
102	Effect of network homogeneity on mechanical, thermal and electrochemical properties of solid polymer electrolytes prepared by homogeneous 4-arm poly(ethylene glycols). Soft Matter, 2020, 16, 4290-4298.	2.7	14
103	Thermodynamic Effect of Anion Activity on Electrochemical Reactions Involving Li ⁺ lons in Roomâ€Temperature Ionic Liquids. ChemElectroChem, 2019, 6, 4444-4449.	3.4	12
104	Excellent dispersibility of single-walled carbon nanotubes in highly concentrated electrolytes and application to gel electrode for Li-S batteries. Electrochemistry Communications, 2019, 109, 106598.	4.7	12
105	Selfâ€Assembly of Polyether Diblock Copolymers in Water and Ionic Liquids. Macromolecular Rapid Communications, 2016, 37, 1207-1211.	3.9	11
106	Effects of Sulfur Loading, Cathode Porosity, and Electrolyte Amount on Li-S Battery Performance with Solvate Ionic Liquid Electrolyte. Electrochemistry, 2019, 87, 254-259.	1.4	11
107	Thermodynamic aspect of sulfur, polysulfide anion and lithium polysulfide: plausible reaction path during discharge of lithium–sulfur battery. Physical Chemistry Chemical Physics, 2021, 23, 6832-6840.	2.8	11
108	Dynamic Chelate Effect on the Li ⁺ -lon Conduction in Solvate Ionic Liquids. Journal of Physical Chemistry C, 2019, 123, 30228-30233.	3.1	10

#	Article	IF	CITATIONS
109	Rheological and Ionic Transport Properties of Nanocomposite Electrolytes Based on Protic Ionic Liquids and Silica Nanoparticles. Langmuir, 2020, 36, 148-158.	3.5	10
110	Protic Ionic Liquids Can Be Both Free Proton Conductors and Benign Superacids. Journal of Physical Chemistry B, 2021, 125, 7855-7862.	2.6	10
111	Ultrafast and Highly Deformable Electromagnetic Hydrogel Actuators Assembled from Liquid Metal Gel Fiber. Advanced Intelligent Systems, 2022, 4, .	6.1	10
112	Direct Wiring of Liquid Metal on an Ultrasoft Substrate Using a Polyvinyl Alcohol Lift-off Method. ACS Applied Materials & Interfaces, 2022, 14, 7241-7251.	8.0	10
113	Li ⁺ transference number and dynamic ion correlations in glyme-Li salt solvate ionic liquids diluted with molecular solvents. Physical Chemistry Chemical Physics, 2022, 24, 14269-14276.	2.8	10
114	Local Structure of Li ⁺ in Superconcentrated Aqueous LiTFSA Solutions. Journal of Physical Chemistry B, 2021, 125, 7477-7484.	2.6	9
115	Solvation Structure of Li ⁺ in Concentrated Acetonitrile and <i>N</i> , <i>N</i> ,Olimethylformamide Solutions Studied by Neutron Diffraction with ⁶ Li/ ⁷ Li Isotopic Substitution Methods. Journal of Physical Chemistry B, 2020, 124, 10456-10464.	2.6	9
116	Redox Active Glyme-Li Salt Solvate Ionic Liquids Based on Tetrabromoferrate(III). Electrochemistry, 2018, 86, 46-51.	1.4	8
117	Rate Performance of LiCoO ₂ Half-cells Using Highly Concentrated Lithium Bis(fluorosulfonyl)amide Electrolytes and Their Relevance to Transport Properties. Electrochemistry, 2021, 89, 389-394.	1.4	8
118	Li-Ion Transport and Solvation of a Li Salt of Weakly Coordinating Polyanions in Ethylene Carbonate/Dimethyl Carbonate Mixtures. ACS Applied Materials & Interfaces, 2022, 14, 18324-18334.	8.0	8
119	Categorizing Molten Salt Complexes as Ionic Liquids and Their Applications to Battery Electrolytes. Electrochemistry, 2016, 84, 674-680.	1.4	7
120	Gel polymer electrolytes based on poly(methacrylamide) derivative having branched pendant with terminal nitrile groups. Solid State Ionics, 2016, 293, 13-17.	2.7	7
121	Solid polymer electrolytes prepared from poly(methacrylamide) derivative having tris(cyanoethoxymethyl) group as its side chain. Solid State Ionics, 2016, 286, 1-6.	2.7	7
122	Transport Properties of Flexible Composite Electrolytes Composed of Li _{1.5} Al _{0.5} Ti _{1.5} (PO ₄) ₃ and a Poly(vinylidene fluoride- <i>co</i> -hexafluoropropylene) Gel Containing a Highly Concentrated Li[N(SO ₂ CF ₃) ₂]/Sulfolane Electrolyte. ACS Omega, 2021, 6,	3.5	7
123	16187-16193. Effects of polyimide sequence and monomer structures on CO2 permeation and mechanical properties of sulfonated polyimide/ionic liquid composite membranes. Polymer, 2022, 241, 124533.	3.8	7
124	Transparent and Breathable Ion Gelâ€Based Sensors toward Multimodal Sensing Ability. Advanced Materials Technologies, 2022, 7, .	5.8	7
125	Thermosensitive soft glassy colloidal arrays of block-copolymer-grafted silica nanoparticles in an ionic liquid. Polymer Journal, 2016, 48, 289-294.	2.7	6
126	Effects of fluoroethylene carbonate addition to Li-glyme solvate ionic liquids on their ionic transport properties and Si composite electrode performance. Electrochimica Acta, 2020, 353, 136559.	5.2	6

#	Article	IF	CITATIONS
127	Design of Polymer Network and Li ⁺ Solvation Enables Thermally and Oxidatively Stable, Mechanically Reliable, and Highly Conductive Polymer Gel Electrolyte for Lithium Batteries. Journal of the Electrochemical Society, 2021, 168, 090538.	2.9	6
128	Importance of Mass Transport in High Energy Density Lithium‣ulfur Batteries Under Lean Electrolyte Conditions. Batteries and Supercaps, 2022, 5, .	4.7	6
129	Glyme–Li salt equimolar molten solvates with iodide/triiodide redox anions. RSC Advances, 2019, 9, 22668-22675.	3.6	5
130	Redox-active glyme–Li tetrahalogenoferrate(<scp>iii</scp>) solvate ionic liquids for semi-liquid lithium secondary batteries. RSC Advances, 2020, 10, 4129-4136.	3.6	5
131	Electrochemical Properties of Poly(vinylidene fluoride- <i>co</i> -hexafluoropropylene) Gel Electrolytes with High-Concentration Li Salt/Sulfolane for Lithium Batteries. Electrochemistry, 2021, 89, 567-572.	1.4	5
132	Effects of Li ion-solvent interaction on ionic transport and electrochemical properties in highly concentrated cyclic carbonate electrolytes. Journal of Non-Crystalline Solids: X, 2021, 11-12, 100071.	1.2	5
133	Colloidal Stability in Ionic Liquids and Relevant Soft Materials. Materials Research Society Symposia Proceedings, 2012, 1473, 7.	0.1	4
134	Ionic liquids as oxidic media for electron transfer studies. Journal of Chemical Physics, 2012, 136, 244501.	3.0	4
135	Anhydrous Superprotonic Polymer by Superacid Protonation of Cross-linked (PNCl ₂) _{<i>n</i>} . Journal of Physical Chemistry C, 2013, 117, 1548-1553.	3.1	4
136	Adsorption of Polyether Block Copolymers at Silica–Water and Silica–Ethylammonium Nitrate Interfaces. Langmuir, 2015, 31, 7025-7031.	3.5	4
137	Effects of Anion on Liquid Structures of Ionic Liquids at Graphene Electrode Interface Analyzed by Molecular Dynamics Simulations. Batteries and Supercaps, 2020, 3, 658-667.	4.7	4
138	Direct Observation of Photoâ€Induced Reversible Sol–Gel Transition in Block Copolymer Selfâ€Assembly Containing an Azobenzene Ionic Liquid. Macromolecular Rapid Communications, 2021, 42, e2100091.	3.9	4
139	Highly Concentrated NaN(SO ₂ F) ₂ /3-Methylsulfolane Electrolyte Solution Showing High Na-Ion Transference Number under Anion-Blocking Conditions. Electrochemistry, 2021, 89, 590-596.	1.4	3
140	Local Lithium-Ion Transport of a Ternary Sulfolane-Lithium Bis(trifluoromethanesulfonyl)amide-Carbonate Electrolyte: Experimental and First-Principles Molecular Dynamics Analysis toward Quasi-Solid-State Lithium-Ion Battery. Journal of the Electrochemical Society, 2022, 169, 020534.	2.9	3
141	Electrochemical Pretreatment of Solidâ€Electrolyte Interphase Formation for Enhanced Li ₄ Ti ₅ O ₁₂ Anode Performance in a Molten Liâ^'Ca Binary Salt Hydrate Electrolyte. ChemElectroChem, 2022, 9, .	3.4	3
142	LiNi _{0.5} Mn _{1.5} O ₄ -Hybridized Gel Polymer Cathode and Gel Polymer Electrolyte Containing a Sulfolane-Based Highly Concentrated Electrolyte for the Fabrication of a 5 V Class of Flexible Lithium Batteries. ACS Omega, 0, , .	3.5	3
143	Design and New Energy Application of Ionic Liquids. RSC Smart Materials, 2017, , 365-389.	0.1	2
144	Liquid Metal–Ionic Liquid Composite Gels for Soft, Mixed Electronic–Ionic Conductors. Macromolecular Chemistry and Physics, 2022, 223, 2100319.	2.2	2

#	Article	IF	CITATIONS
145	Silica Colloidal Suspensions in Ionic Liquids: Colloidal Stability and Fabrication of Ion Gels on the basis of Colloidal Self-Assembly. ACS Symposium Series, 2010, , 199-210.	0.5	1
146	4.ã,³ãƒã,╋ƒ‰å^†æ•£åª'体ãëã⊷ã┥ã®ã,฿,ªãƒ³æ¶²ä½". Electrochemistry, 2012, 80, 596-601.	1.4	1
147	Molten Li Salt Solvate-Silica Nanoparticle Composite Electrolytes with Tailored Rheological Properties. Electrochemistry, 2020, 88, 174-177.	1.4	1
148	Factors Affecting Li ⁺ Transport Properties of Molten Li Salt Solvate Electrolytes. ECS Meeting Abstracts, 2020, MA2020-02, 2948-2948.	0.0	1
149	Fundamental Properties and Solubility Toward Cathode Active Materials. , 2021, , 277-286.		0
150	Incorporation of Nickel Sulfide into Sulfur Cathode for Li–S Battery. ECS Meeting Abstracts, 2017, , .	0.0	0
151	The Role of Ionic Liquid Electrolytes in Li-S Batteries. ECS Meeting Abstracts, 2017, , .	0.0	Ο
152	Glyme-Na Salt Equimolar Complex Electrolytes for Sodium Ion Batteries. ECS Meeting Abstracts, 2018, ,	0.0	0
153	Solvation Structure and Li-Ion Transport Properties of Highly Concentrated Sulfone-Based Electrolytes. ECS Meeting Abstracts, 2019, , .	0.0	0
154	Liquid Structure and Battery Application of Highly Concentrated Sulfolane-Based Sodium Electrolytes. ECS Meeting Abstracts, 2019, , .	0.0	0
155	Solvate Structures and Transport Properties in Highly Concentrated Li[FSA]/Succinonitrile Liquid Electrolytes. ECS Meeting Abstracts, 2019, , .	0.0	Ο
156	Li Ion Hopping Conduction in Highly Concentrated Liquid Electrolytes. ECS Meeting Abstracts, 2019, , .	0.0	0
157	High Transference Number of Li Ion in Highly Concentrated Lithium Bis(trifluoromethanesulfonyl)Amide/Dinitrile Liquid Electrolytes. ECS Meeting Abstracts, 2020, MA2020-01, 372-372.	0.0	0
158	High Transference Number of Na Ion in Highly Concentrated Sodium Bis(fluorosulfonyl)Amide/l³-Butyrolactone Electrolytes for Sodium Batteries. ECS Meeting Abstracts, 2020, MA2020-01, 238-238.	0.0	0
159	Preparation of Li-S Polymer Battery Utilizing High Compatibility of Carbonaceous Materials with Highly Concentrated Electrolytes. ECS Meeting Abstracts, 2020, MA2020-02, 3528-3528.	0.0	Ο
160	Lithium Polysulfide Sparingly Solvating Electrolyte for Practical High Energy Density Lithium Sulfur Battery. ECS Meeting Abstracts, 2020, MA2020-02, 280-280.	0.0	0
161	Self-Assembly of Block Copolymers in an Ionic Liquid and Properties of Resulting Ion Gels. ECS Meeting Abstracts, 2020, MA2020-02, 2966-2966.	0.0	0
162	High Transference Number of Li Ion in Highly Concentrated Lithium Bis(trifluoromethanesulfonyl)Amide/Dinitrile Liquid Electrolytes for Lithium Sulfur Batteries. ECS Meeting Abstracts, 2020, MA2020-02, 3443-3443.	0.0	0

#	Article	IF	CITATIONS
163	Strategy and Issue for Li-S Batteries with High Energy Density. ECS Meeting Abstracts, 2020, MA2020-02, 3529-3529.	0.0	0
164	Ionic Liquid/Sulfonated Polyimide Composite Membranes: Effect of Polyimide Sequence on CO2 Transport Properties. ECS Meeting Abstracts, 2020, MA2020-02, 2902-2902.	0.0	0
165	Performance of Lithium Sulfur Batteries Consisting of Li2s/Carbon Composite Cathode. ECS Meeting Abstracts, 2020, MA2020-02, 3530-3530.	0.0	0
166	Preparation of Electron/Ion-Mixed Conducting Gel Using Liquid Metal and Ionic Liquid. ECS Meeting Abstracts, 2020, MA2020-02, 2967-2967.	0.0	0
167	Design of Sparingly Solvating Electrolytes for Li-S Batteries. ECS Meeting Abstracts, 2020, MA2020-02, 453-453.	0.0	0
168	Electrochemical Pretreatment of Solid–Electrolyte Interphase Formation for Enhanced Li ₄ Ti ₅ O ₁₂ Anode Performance in a Molten Li–Ca Binary Salt Hydrate Electrolyte. ChemElectroChem, 0, , .	3.4	0