Maria Regina D'Império Lima

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4637892/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Harmful Effects of Granulocytic Myeloid-Derived Suppressor Cells on Tuberculosis Caused by Hypervirulent Mycobacteria. Journal of Infectious Diseases, 2021, 223, 494-507.	4.0	11
2	Combining Host Genetics and Functional Analysis to Depict Inflammasome Contribution in Tuberculosis Susceptibility and Outcome in Endemic Areas. Frontiers in Immunology, 2020, 11, 550624.	4.8	7
3	IL-1α promotes liver inflammation and necrosis during blood-stage Plasmodium chabaudi malaria. Scientific Reports, 2019, 9, 7575.	3.3	19
4	Inhibiting Adenosine Receptor Signaling Promotes Accumulation of Effector CD4+ T Cells in the Lung Parenchyma During Severe Tuberculosis. Journal of Infectious Diseases, 2019, 219, 964-974.	4.0	13
5	CD28 deficiency leads to accumulation of germinal-center independent IgM+ experienced B cells and to production of protective IgM during experimental malaria. PLoS ONE, 2018, 13, e0202522.	2.5	5
6	MyD88 activation in cardiomyocytes contributes to the heart immune response to acute Trypanosoma cruzi infection with no effect on local parasite control. PLoS Neglected Tropical Diseases, 2018, 12, e0006617.	3.0	1
7	Programmed Cell Death Protein 1–PDL1 Interaction Prevents Heart Damage in Chronic Trypanosoma cruzi Infection. Frontiers in Immunology, 2018, 9, 997.	4.8	19
8	Lysosomal Cathepsin Release Is Required for NLRP3-Inflammasome Activation by Mycobacterium tuberculosis in Infected Macrophages. Frontiers in Immunology, 2018, 9, 1427.	4.8	77
9	TLR4-Mediated Placental Pathology and Pregnancy Outcome in Experimental Malaria. Scientific Reports, 2017, 7, 8623.	3.3	33
10	Recombinant BCG Expressing LTAK63 Adjuvant induces Superior Protection against Mycobacterium tuberculosis. Scientific Reports, 2017, 7, 2109.	3.3	16
11	The role of the P2X7 receptor in murine cutaneous leishmaniasis: aspects of inflammation and parasite control. Purinergic Signalling, 2017, 13, 143-152.	2.2	29
12	Human CD40 ligand deficiency dysregulates the macrophage transcriptome causing functional defects that are improved by exogenous IFN-I ³ . Journal of Allergy and Clinical Immunology, 2017, 139, 900-912.e7.	2.9	27
13	P2X7 Receptor in Bone Marrow-Derived Cells Aggravates Tuberculosis Caused by Hypervirulent Mycobacterium bovis. Frontiers in Immunology, 2017, 8, 435.	4.8	14
14	P2X7 receptor drives Th1 cell differentiation and controls the follicular helper T cell population to protect against Plasmodium chabaudi malaria. PLoS Pathogens, 2017, 13, e1006595.	4.7	66
15	N-acetyl-cysteine exhibits potent anti-mycobacterial activity in addition to its known anti-oxidative functions. BMC Microbiology, 2016, 16, 251.	3.3	88
16	The role of TLR2 in the acute inflammatory response induced by Bothrops atrox snake venom. Toxicon, 2016, 118, 121-128.	1.6	30
17	Interferonâ€gamma reduces the proliferation of <i>M. tuberculosis</i> within macrophages from a patient with a novel hypomorphic NEMO mutation. Pediatric Blood and Cancer, 2016, 63, 1863-1866.	1.5	11
18	Tuberculosis in an autosomal recessive case of chronic granulomatous disease due to mutation of the NCF1 gene. Allergologia Et Immunopathologia, 2016, 44, 276-279.	1.7	7

#	Article	IF	CITATIONS
19	Innate immunity in tuberculosis: how the sensing of mycobacteria and tissue damage modulates macrophage death. Microbes and Infection, 2016, 18, 11-20.	1.9	45
20	Targeting Neutrophils to Prevent Malaria-Associated Acute Lung Injury/Acute Respiratory Distress Syndrome in Mice. PLoS Pathogens, 2016, 12, e1006054.	4.7	81
21	Splenic Macrophage Subsets and Their Function during Blood-Borne Infections. Frontiers in Immunology, 2015, 6, 480.	4.8	142
22	IFN-γPriming Effects on the Maintenance of Effector Memory CD4+T Cells and on Phagocyte Function: Evidences from Infectious Diseases. Journal of Immunology Research, 2015, 2015, 1-8.	2.2	23
23	Revisiting Mouse Peritoneal Macrophages: Heterogeneity, Development, and Function. Frontiers in Immunology, 2015, 6, 225.	4.8	231
24	In Vivo Approaches Reveal a Key Role for DCs in CD4+ T Cell Activation and Parasite Clearance during the Acute Phase of Experimental Blood-Stage Malaria. PLoS Pathogens, 2015, 11, e1004598.	4.7	40
25	Predictive Criteria to Study the Pathogenesis of Malaria-Associated ALI/ARDS in Mice. Mediators of Inflammation, 2014, 2014, 1-12.	3.0	16
26	Chagas Disease: Still Many Unsolved Issues. Mediators of Inflammation, 2014, 2014, 1-9.	3.0	29
27	Pulmonary Infection with Hypervirulent Mycobacteria Reveals a Crucial Role for the P2X7 Receptor in Aggressive Forms of Tuberculosis. PLoS Pathogens, 2014, 10, e1004188.	4.7	74
28	Ultrastructure of the lung in a murine model of malaria-associated acute lung injury/acute respiratory distress syndrome. Malaria Journal, 2014, 13, 230.	2.3	26
29	MyD88 Signaling Is Directly Involved in the Development of Murine Placental Malaria. Infection and Immunity, 2014, 82, 830-838.	2.2	23
30	Cytosolic flagellin-induced lysosomal pathway regulates inflammasome-dependent and -independent macrophage responses. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E3321-30.	7.1	50
31	IFN-γ–Induced Priming Maintains Long-Term Strain-Transcending Immunity against Blood-Stage <i>Plasmodium chabaudi</i> Malaria. Journal of Immunology, 2013, 191, 5160-5169.	0.8	25
32	Challenge of Chronically Infected Mice with Homologous Trypanosoma cruzi Parasites Enhances the Immune Response but Does Not Modify Cardiopathy: Implications for the Design of a Therapeutic Vaccine. Vaccine Journal, 2013, 20, 248-254.	3.1	4
33	The crucial role of the MyD88 adaptor protein in the inflammatory response induced by Bothrops atrox venom. Toxicon, 2013, 67, 37-46.	1.6	24
34	Liver Accumulation of Plasmodium chabaudi-Infected Red Blood Cells and Modulation of Regulatory T Cell and Dendritic Cell Responses. PLoS ONE, 2013, 8, e81409.	2.5	18
35	Early skin immunological disturbance after Plasmodium-infected mosquito bites. Cellular Immunology, 2012, 277, 22-32.	3.0	20
36	Pathogenic Mycobacterium bovis strains differ in their ability to modulate the proinflammatory activation phenotype of macrophages. BMC Microbiology, 2012, 12, 166.	3.3	27

#	Article	IF	CITATIONS
37	Anti-IL-2 Treatment Impairs the Expansion of Treg Cell Population during Acute Malaria and Enhances the Th1 Cell Response at the Chronic Disease. PLoS ONE, 2012, 7, e29894.	2.5	13
38	Oxidative Stress and Modification of Renal Vascular Permeability Are Associated with Acute Kidney Injury during P. berghei ANKA Infection. PLoS ONE, 2012, 7, e44004.	2.5	31
39	Local inflammatory events induced by Bothrops atrox snake venom and the release of distinct classes of inflammatory mediators. Toxicon, 2012, 60, 12-20.	1.6	68
40	IL-12p40 Deficiency Leads to Uncontrolled Trypanosoma cruzi Dissemination in the Spinal Cord Resulting in Neuronal Death and Motor Dysfunction. PLoS ONE, 2012, 7, e49022.	2.5	13
41	Cellular Renewal and Improvement of Local Cell Effector Activity in Peritoneal Cavity in Response to Infectious Stimuli. PLoS ONE, 2011, 6, e22141.	2.5	57
42	The Spleen CD4+ T Cell Response to Blood-Stage Plasmodium chabaudi Malaria Develops in Two Phases Characterized by Different Properties. PLoS ONE, 2011, 6, e22434.	2.5	33
43	The Liver Plays a Major Role in Clearance and Destruction of Blood Trypomastigotes in Trypanosoma cruzi Chronically Infected Mice. PLoS Neglected Tropical Diseases, 2010, 4, e578.	3.0	41
44	Neurodegeneration and Increased Production of Nitrotyrosine, Nitric Oxide Synthase, IFN-γ and S100β Protein in the Spinal Cord of IL-12p40-Deficient Mice Infected with <i>Trypanosoma cruzi</i> . NeuroImmunoModulation, 2010, 17, 67-78.	1.8	15
45	Comparative Analysis of Activation Phenotype, Proliferation, and IFN-γ Production by Spleen NK1.1 ⁺ and NK1.1 ^{â'} T Cells During <i>Plasmodium chabaudi</i> AS Malaria. Journal of Interferon and Cytokine Research, 2010, 30, 417-426.	1.2	9
46	Infection by the Sylvio X10/4 clone of Trypanosoma cruzi: relevance of a low-virulence model of Chagas' disease. Microbes and Infection, 2009, 11, 1037-1045.	1.9	31
47	Gradual Decline in Malaria-Specific Memory T Cell Responses Leads to Failure to Maintain Long-Term Protective Immunity toPlasmodium chabaudiAS Despite Persistence of B Cell Memory and Circulating Antibody. Journal of Immunology, 2008, 181, 8344-8355.	0.8	52
48	Role of Endogenous IFN-Î ³ in Macrophage Programming Induced by IL-12 and IL-18. Journal of Interferon and Cytokine Research, 2007, 27, 399-410.	1.2	51
49	IFNâ€ <i>γ</i> , But Not Nitric Oxide or Specific IgG, is Essential for the <i>In vivo</i> Control of Lowâ€virulence Sylvio X10/4 <i>Trypanosoma cruzi</i> Parasites. Scandinavian Journal of Immunology, 2007, 66, 297-308.	2.7	44
50	Characterization of the Spleen Bâ€Cell Compartment at the Early and Late Bloodâ€Stage <i>Plasmodium chabaudi</i> Malaria. Scandinavian Journal of Immunology, 2007, 66, 309-319.	2.7	21
51	Contribution of NK, NK T, γδT, and αβ T Cells to the Gamma Interferon Response Required for Liver Protection against Trypanosoma cruzi. Infection and Immunity, 2006, 74, 2031-2042.	2.2	50
52	Analysis of the activation profile of dendritic cells derived from the bone marrow of interleukin-12/interleukin-23-deficient mice. Immunology, 2005, 114, 499-506.	4.4	20
53	Role of CD28 in Polyclonal and Specific T and B Cell Responses Required for Protection against Blood Stage Malaria. Journal of Immunology, 2005, 174, 790-799.	0.8	36
54	Pathology Affects Different Organs in Two Mouse Strains Chronically Infected by a Trypanosoma cruzi Clone: a Model for Genetic Studies of Chagas' Disease. Infection and Immunity, 2004, 72, 2350-2357.	2.2	50

#	Article	IF	CITATIONS
55	What kind of message does IL-12/IL-23 bring to macrophages and dendritic cells?. Microbes and Infection, 2004, 6, 630-636.	1.9	62
56	CHALLENGE OF TRYPANOSOMA CRUZI CHRONICALLY INFECTED MICE WITH TRYPOMASTIGOTES ACTIVATES THE IMMUNE SYSTEM AND REDUCES SUBPATENT PARASITEMIA LEVELS. Journal of Parasitology, 2004, 90, 516-523.	0.7	11
57	Impaired Macrophage Responses May Contribute to Exacerbation of Blood-StagePlasmodium chabaudi chabaudiMalaria in Interleukin-12-Deficient Mice. Journal of Interferon and Cytokine Research, 2002, 22, 1191-1199.	1.2	22
58	Influence of the Polyclonal Activation Induced by Plasmodium chabaudi on Ongoing OVA-Specific B- and T-Cell Responses. Scandinavian Journal of Immunology, 2002, 56, 408-416.	2.7	13
59	Susceptibility of the different developmental stages of the asexual (schizogonic) erythrocyte cycle of Plasmodium chabaudi chabaudi to hyperimmune serum, immunoglobulin (lg)G1, lgG2a and F(ab′)2 fragments. Parasite Immunology, 2001, 23, 587-597.	1.5	28
60	Most parasite-specific CD8+ cells in Trypanosoma cruzi -infected chronic mice are down-regulated for T-cell receptor-αβ and CD8 molecules. Immunology, 2001, 102, 209-217.	4.4	26
61	Plasmodium chabaudi chabaudi:A Monoclonal Antibody Raised against Soluble Antigens Present in the Plasma of Infected Mice Recognizes a 250-kDa Schizont Glycoprotein That Is Secreted during Schizogony. Experimental Parasitology, 1999, 91, 97-100.	1.2	3
62	Activation of CD4+ and CD8+ parasite -specific T-cells by macrophages infected with live T. Cruzi amastigotes. Immunology Letters, 1998, 63, 97-105.	2.5	4
63	Role of Membrane-Bound IgM in Trypanosoma cruzi Evasion from Immune Clearance. Journal of Parasitology, 1997, 83, 230.	0.7	10
64	V-region-related and -unrelated immunosupression accompanying infections. Memorias Do Instituto Oswaldo Cruz, 1992, 87, 35-41.	1.6	6
65	Clonal analysis of B lymphocyte responses to Plasmodium chabaudi infection of normal and immunoprotected mice. International Immunology, 1991, 3, 1207-1216.	4.0	19
66	Antigenic cross-reactivity of venoms obtained from snakes of genus Bothrops. Toxicon, 1990, 28, 181-188.	1.6	28
67	Purification of F(ab′)2 anti-snake venom by caprylic acid: A fast method for obtaining IgG fragments with high neutralization activity, purity and yield. Toxicon, 1989, 27, 297-303.	1.6	70
68	Isotypic pattern of the polyclonal B cell response during primary infection byPlasmodium chabaudi and in immune-protected mice. European Journal of Immunology, 1987, 17, 599-603.	2.9	53
69	Polyclonal Lymphocyte Responses to Murine Trypanosoma cruzi Infection Scandinavian Journal of Immunology, 1986, 24, 661-668.	2.7	147
70	Polyclonal Lymphocyte Responses to Murine Trypanosoma cruzi Infection Scandinavian Journal of Immunology, 1986, 24, 669-679.	2.7	53
71	Very large and isotypically atypical polyclonal plaque-forming cell responses in mice infected withTrypanosoma cruzi. European Journal of Immunology, 1985, 15, 201-203.	2.9	87