
Jianqiang Miao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4637856/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characterization of Prochloraz Resistance in <i>Fusarium fujikuroi</i> from Heilongjiang Province in China. Plant Disease, 2022, 106, 418-424.	1.4	4
2	Resistance assessment of pyraoxystrobin in Magnaporthe oryzae and the detection of a point mutation in cyt b that confers resistance. Pesticide Biochemistry and Physiology, 2022, 180, 105006.	3.6	9
3	Resistance to pydiflumetofen in <i>Botrytis cinerea</i> : risk assessment and detection of point mutations in <i>sdh</i> genes that confer resistance. Pest Management Science, 2022, 78, 1448-1456.	3.4	14
4	Resistance Risk and Novel Resistance-Related Point Mutations in Target Protein PiORP1 of Fluoxapiprolin in <i>Phytophthora infestans</i> . Journal of Agricultural and Food Chemistry, 2022, 70, 4881-4888.	5.2	7
5	Analysis of resistance risk and resistanceâ€related point mutations in <i>Cyt b</i> of <scp>Qiol</scp> fungicide ametoctradin in <i>Phytophthora litchii</i> . Pest Management Science, 2022, 78, 2921-2930.	3.4	8
6	Two typical acyl-CoA-binding proteins (ACBPs) are required for the asexual development and virulence of Phytophthora sojae. Fungal Genetics and Biology, 2022, 161, 103695.	2.1	1
7	Characterization of <i>Colletotrichum</i> spp. Sensitivity to Carbendazim for Isolates Causing Strawberry Anthracnose in China. Plant Disease, 2021, 105, 87-95.	1.4	11
8	Heterokaryotic state of a point mutation (<scp>H249Y</scp>) in <scp>SDHB</scp> protein drives the evolution of thifluzamide resistance in <i>Rhizoctonia solani</i> . Pest Management Science, 2021, 77, 1392-1400.	3.4	10
9	Survival Cost and Diverse Molecular Mechanisms of <i>Magnaporthe oryzae</i> Isolate Resistance to Epoxiconazole. Plant Disease, 2021, 105, 473-480.	1.4	6
10	Transcriptional Variability Associated With CRISPR-Mediated Gene Replacements at the Phytophthora sojae Avr1b-1 Locus. Frontiers in Microbiology, 2021, 12, 645331.	3.5	7
11	Activity and Resistance-Related Point Mutations in Target Protein PcORP1 of Fluoxapiprolin in Phytophthora capsici. Journal of Agricultural and Food Chemistry, 2021, 69, 3827-3835.	5.2	13
12	An FYVE-Domain-Containing Protein, PsFP1, Is Involved in Vegetative Growth, Oxidative Stress Response and Virulence of Phytophthora sojae. International Journal of Molecular Sciences, 2021, 22, 6601.	4.1	8
13	Analysis of the <scp>prochlorazâ€Mn</scp> resistance risk and its molecular basis in <scp><i>Mycogone rosea</i></scp> from <scp><i>Agaricus bisporus</i></scp> . Pest Management Science, 2021, 77, 4680-4690.	3.4	9
14	Activity and Resistance Assessment of a New OSBP Inhibitor, R034-1, in <i>Phytophthora capsici</i> and the Detection of Point Mutations in PcORP1 that Confer Resistance. Journal of Agricultural and Food Chemistry, 2020, 68, 13651-13660.	5.2	14
15	Sensitivity of <i>Pythium</i> spp. and <i>Phytopythium</i> spp. and tolerance mechanism of <i>Pythium</i> spp. to oxathiapiprolin. Pest Management Science, 2020, 76, 3975-3981.	3.4	10
16	Sensitivity of Different Developmental Stages and Resistance Risk Assessment of Phytophthora capsici to Fluopicolide in China. Frontiers in Microbiology, 2020, 11, 185.	3.5	17
17	Three <scp>pointâ€mutations</scp> in cytochrome <i>b</i> confer resistance to trifloxystrobin in <i>Magnaporthe oryzae</i> . Pest Management Science, 2020, 76, 4258-4267.	3.4	16
18	Multiple point mutations in <i>PsORP1</i> gene conferring different resistance levels to oxathiapiprolin confirmed using <scp>CRISPR–Cas9</scp> in <i>Phytophthora sojae</i> . Pest Management Science, 2020, 76, 2434-2440.	3.4	29

JIANQIANG MIAO

#	Article	IF	CITATIONS
19	Identification of differentially activated pathways in Phytophthora sojae at the mycelial, cyst, and oospore stages by TMT-based quantitative proteomics analysis. Journal of Proteomics, 2020, 221, 103776.	2.4	8
20	PcMuORP1, an Oxathiapiprolin-Resistance Gene, Functions as a Novel Selection Marker for Phytophthora Transformation and CRISPR/Cas9 Mediated Genome Editing. Frontiers in Microbiology, 2019, 10, 2402.	3.5	21
21	Pseudoperonospora cubensis in China: Its sensitivity to and control by oxathiapiprolin. Pesticide Biochemistry and Physiology, 2018, 147, 96-101.	3.6	19
22	Oxysterolâ€binding proteinâ€related protein 2 is not essential for <i>Phytophthora sojae</i> based on CRISPR/Cas9 deletions. Environmental Microbiology Reports, 2018, 10, 293-298.	2.4	14
23	Mutations in ORP1 Conferring Oxathiapiprolin Resistance Confirmed by Genome Editing using CRISPR/Cas9 in <i>Phytophthora capsici</i> and <i>P</i> . <i>sojae</i> . Phytopathology, 2018, 108, 1412-1419.	2.2	60
24	Resistance Assessment for Oxathiapiprolin in Phytophthora capsici and the Detection of a Point Mutation (G769W) in PcORP1 that Confers Resistance. Frontiers in Microbiology, 2016, 7, 615.	3.5	82
25	C239S Mutation in the \hat{l}^2 -Tubulin of Phytophthora sojae Confers Resistance to Zoxamide. Frontiers in Microbiology, 2016, 7, 762.	3.5	23
26	Activity of the novel fungicide oxathiapiprolin against plantâ€pathogenic oomycetes. Pest Management Science, 2016, 72, 1572-1577.	3.4	80
27	Proteomic profile of the plant-pathogenic oomycete <i>Phytophthora capsici</i> in response to the fungicide pyrimorph. Proteomics, 2015, 15, 2972-2982.	2.2	27