
Hatice Mutlu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4637553/publications.pdf Version: 2024-02-01

Ηλτιςε Μυτιμ

#	Article	IF	CITATIONS
1	The use of elemental sulfur as an alternative feedstock for polymeric materials. Nature Chemistry, 2013, 5, 518-524.	6.6	1,046
2	Temperature- and light-responsive smart polymer materials. Chemical Society Reviews, 2013, 42, 7468-7483.	18.7	894
3	Castor oil as a renewable resource for the chemical industry. European Journal of Lipid Science and Technology, 2010, 112, 10-30.	1.0	587
4	<i>></i> -Nitrobenzyl Alcohol Derivatives: Opportunities in Polymer and Materials Science. Macromolecules, 2012, 45, 1723-1736.	2.2	480
5	Multi-stimuli responsive polymers – the all-in-one talents. Polymer Chemistry, 2014, 5, 25-36.	1.9	453
6	Stimuli responsive materials. Chemical Society Reviews, 2013, 42, 7055.	18.7	404
7	Synthesis of pentafluorophenyl(meth)acrylate polymers: New precursor polymers for the synthesis of multifunctional materials. European Polymer Journal, 2005, 41, 1569-1575.	2.6	368
8	Activated Ester Containing Polymers: Opportunities and Challenges for the Design of Functional Macromolecules. Chemical Reviews, 2016, 116, 1434-1495.	23.0	340
9	Sustainable routes to polyurethane precursors. Green Chemistry, 2013, 15, 1431.	4.6	332
10	Standing on the shoulders of Hermann Staudinger: Postâ€polymerization modification from past to present. Journal of Polymer Science Part A, 2013, 51, 1-28.	2.5	331
11	Synthesis of wellâ€defined polymeric activated esters. Journal of Polymer Science Part A, 2008, 46, 6677-6687.	2.5	269
12	Acyclic dienemetathesis: a versatile tool for the construction of defined polymer architectures. Chemical Society Reviews, 2011, 40, 1404-1445.	18.7	262
13	CO ₂ â€Responsive Polymers. Macromolecular Rapid Communications, 2013, 34, 1118-1133.	2.0	234
14	Sulfur Chemistry in Polymer and Materials Science. Macromolecular Rapid Communications, 2019, 40, e1800650.	2.0	204
15	Trends in polymeric shape memory hydrogels and hydrogel actuators. Polymer Chemistry, 2019, 10, 1036-1055.	1.9	172
16	CO ₂ -Responsive polymer materials. Polymer Chemistry, 2017, 8, 12-23.	1.9	160
17	Reading Polymers: Sequencing of Natural and Synthetic Macromolecules. Angewandte Chemie - International Edition, 2014, 53, 13010-13019.	7.2	152
18	Inverse vulcanization of elemental sulfur with 1,4-diphenylbutadiyne for cathode materials in Li–S batteries. RSC Advances, 2015, 5, 24718-24722.	1.7	149

#	Article	IF	CITATIONS
19	Toward Self-Healing Hydrogels Using One-Pot Thiol–Ene Click and Borax-Diol Chemistry. ACS Macro Letters, 2015, 4, 673-678.	2.3	125
20	Sulfurâ€Based Polymer Composites from Vegetable Oils and Elemental Sulfur: A Sustainable Active Material for Li–S Batteries. Macromolecular Chemistry and Physics, 2017, 218, 1600303.	1.1	116
21	Unsaturated PA X,20 from Renewable Resources via Metathesis and Catalytic Amidation. Macromolecular Chemistry and Physics, 2009, 210, 1019-1025.	1.1	108
22	TBD catalysis with dimethyl carbonate: a fruitful and sustainable alliance. Green Chemistry, 2012, 14, 1728.	4.6	95
23	Three-Component Reactions for Post-Polymerization Modifications. ACS Macro Letters, 2013, 2, 419-422.	2.3	82
24	Rapid Mercury(II) Removal by Electrospun Sulfur Copolymers. Polymers, 2016, 8, 266.	2.0	82
25	A sulfur–eugenol allyl ether copolymer: a material synthesized via inverse vulcanization from renewable resources and its application in Li–S batteries. Materials Chemistry Frontiers, 2017, 1, 1818-1822.	3.2	80
26	Multifaceted Synthetic Route to Functional Polyacrylates by Transesterification of Poly(pentafluorophenyl acrylates). Macromolecules, 2015, 48, 8695-8707.	2.2	68
27	Controlled folding of polystyrene single chains: design of asymmetric covalent bridges. Polymer Chemistry, 2012, 3, 1796-1802.	1.9	62
28	Self-metathesis of fatty acid methyl esters: full conversion by choosing the appropriate plant oil. RSC Advances, 2013, 3, 4927.	1.7	62
29	Untapped potential for debonding on demand: the wonderful world of azo-compounds. Materials Horizons, 2018, 5, 162-183.	6.4	54
30	Controlled Positioning of Activated Ester Moieties on Wellâ€Đefined Linear Polymer Chains. Macromolecular Rapid Communications, 2012, 33, 54-60.	2.0	50
31	Degradable fluorescent single-chain nanoparticles based on metathesis polymers. Chemical Communications, 2017, 53, 775-778.	2.2	49
32	Photo- and Metallo-responsive <i>N</i> -Alkyl α-Bisimines as Orthogonally Addressable Main-Chain Functional Groups in Metathesis Polymers. Journal of the American Chemical Society, 2016, 138, 1142-1145.	6.6	41
33	Green chain-shattering polymers based on a self-immolative azobenzene motif. Polymer Chemistry, 2016, 7, 2272-2279.	1.9	37
34	Precision PEGylated Polymers Obtained by Sequence ontrolled Copolymerization and Postpolymerization Modification. Angewandte Chemie - International Edition, 2014, 53, 9231-9235.	7.2	36
35	A Subtractive Photoresist Platform for Micro―and Macroscopic 3D Printed Structures. Advanced Functional Materials, 2018, 28, 1801405.	7.8	33

 $_{36}$ Sequential post-polymerization modification reactions of poly(pentafluorophenyl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 62 Tg (4-vinylbe

#	Article	IF	CITATIONS
37	Dual-Gated Supramolecular Star Polymers in Aqueous Solution. Macromolecules, 2017, 50, 2375-2386.	2.2	31
38	Ringâ€opening metathesis polymerization of fatty acid derived monomers. Journal of Polymer Science Part A, 2010, 48, 5899-5906.	2.5	30
39	On the Polymerization Behavior of Telomers: Metathesis versus Thiol–Ene Chemistry. Macromolecules, 2012, 45, 1866-1878.	2.2	30
40	Contemporary Photoligation Chemistry: The Visible Light Challenge. Chemistry - A European Journal, 2019, 25, 3700-3709.	1.7	30
41	Prevent or Cure—The Unprecedented Need for Selfâ€Reporting Materials. Angewandte Chemie - International Edition, 2021, 60, 17290-17313.	7.2	30
42	Copolymers featuring pentafluorophenyl ester and photolabile amine units: synthesis and application as reactive photopatterns. Polymer Chemistry, 2013, 4, 891.	1.9	29
43	Advanced AAO Templating of Nanostructured Stimuliâ€Responsive Polymers: Hype or Hope?. Advanced Functional Materials, 2020, 30, 1902959.	7.8	29
44	CO ₂ -Triggered UCST transition of amphiphilic triblock copolymers and their self-assemblies. Polymer Chemistry, 2017, 8, 2619-2629.	1.9	28
45	Facile Fabrication of CO ₂ -Responsive Nanofibers from Photo-Cross-Linked Poly(pentafluorophenyl acrylate) Nanofibers. ACS Macro Letters, 2018, 7, 431-436.	2.3	28
46	Post-polymerization modification of reactive polymers derived from vinylcyclopropane: 1. synthesis and thermo-responsive behaviour. Polymer Chemistry, 2013, 4, 2724.	1.9	27
47	Fabrication of Chemically Tunable, Hierarchically Branched Polymeric Nanostructures by Multi-branched Anodic Aluminum Oxide Templates. Langmuir, 2016, 32, 6437-6444.	1.6	27
48	CO ₂ -Responsive graft copolymers: synthesis and characterization. Polymer Chemistry, 2017, 8, 1206-1216.	1.9	27
49	Dynamic covalent single chain nanoparticles based on hetero Diels–Alder chemistry. Chemical Communications, 2017, 53, 157-160.	2.2	27
50	Self-reporting and refoldable profluorescent single-chain nanoparticles. Chemical Science, 2018, 9, 4696-4702.	3.7	27
51	"Breathing―CO 2 ― O 2 ― and Lightâ€Responsive Vesicles from a Triblock Copolymer for Rateâ€Tunable Controlled Release. Macromolecular Rapid Communications, 2018, 39, 1700313.	2.0	27
52	Polybutadiene Functionalization via an Efficient Avenue. ACS Macro Letters, 2016, 5, 1146-1151.	2.3	26
53	Tailoring Properties of Carbon Nanotube Dispersions and Nanocomposites Using Temperature-Responsive Copolymers of Pyrene-Modified Poly(N-cyclopropylacrylamide). Macromolecules, 2010, 43, 9447-9453.	2.2	23
54	On the synthesis of sequence-controlled poly(vinyl benzyl amine-co-N-substituted maleimides) copolymers. European Polymer Journal, 2015, 62, 338-346.	2.6	22

#	Article	IF	CITATIONS
55	Self-reporting visible light-induced polymer chain collapse. Polymer Chemistry, 2019, 10, 4513-4518.	1.9	22
56	Dual-Gated Chain Shattering Based on Light Responsive Benzophenones and Thermally Responsive Diels–Alder Linkages. Macromolecules, 2017, 50, 5385-5391.	2.2	21
57	The para-fluoro-thiol reaction as a powerful tool for precision network synthesis. Polymer Chemistry, 2017, 8, 3778-3782.	1.9	21
58	About the activity and selectivity of less well-known metathesis catalysts during ADMET polymerizations. Beilstein Journal of Organic Chemistry, 2010, 6, 1149-1158.	1.3	20
59	Acyclic Triene Metathesis Polymerization of <i>Plukenetia Conophora</i> Oil: Branched Polymers by Direct Polymerization of Renewable Resources. Macromolecular Chemistry and Physics, 2012, 213, 87-96.	1.1	20
60	Crossâ€metathesis versus palladiumâ€catalyzed CH activation: Acetoxy ester functionalization of unsaturated fatty acid methyl esters. European Journal of Lipid Science and Technology, 2013, 115, 76-85.	1.0	20
61	Post-polymerization modification of reactive polymers derived from vinylcyclopropane: a poly(vinylcyclopropane) derivative with physical gelation and UCST behaviour in ethanol–water mixtures. Polymer Chemistry, 2014, 5, 5823-5828.	1.9	20
62	Thermo- and CO ₂ -Responsive Linear Polymers and Hydrogels as CO ₂ Capturing Materials. Science of Advanced Materials, 2015, 7, 948-955.	0.1	20
63	Stepwise Lightâ€Induced Dual Compaction of Singleâ€Chain Nanoparticles. Macromolecular Rapid Communications, 2017, 38, 1700264.	2.0	18
64	Light-Induced Step-Growth Polymerization of AB-Type Photo-Monomers at Ambient Temperature. ACS Macro Letters, 2018, 7, 201-207.	2.3	18
65	The unrevealed potential of elemental sulfur for the synthesis of high sulfur content bio-based aliphatic polyesters. Polymer Chemistry, 2020, 11, 241-248.	1.9	18
66	Fabrication of color changeable CO2 sensitive nanofibers. Polymer Chemistry, 2017, 8, 7446-7451.	1.9	17
67	Making the Best of Polymers with Sulfur–Nitrogen Bonds: From Sources to Innovative Materials. Macromolecular Rapid Communications, 2020, 41, e2000181.	2.0	17
68	Dynamic covalent polymer networks <i>via</i> combined nitroxide exchange reaction and nitroxide mediated polymerization. Polymer Chemistry, 2020, 11, 2502-2510.	1.9	17
69	The toolbox of porous anodic aluminum oxide–based nanocomposites: from preparation to application. Colloid and Polymer Science, 2021, 299, 325-341.	1.0	17
70	4-Vinylbenzenesulfonic acid adduct of epoxidized soybean oil: Synthesis, free radical and ADMET polymerizations. European Polymer Journal, 2011, 47, 1467-1476.	2.6	16
71	Twoâ€inâ€One: λâ€Orthogonal Photochemistry on a Radical Photoinitiating System. Macromolecular Rapid Communications, 2017, 38, 1600598.	2.0	16
72	UVâ€ŧriggered CO ₂ â€ŧesponsive behavior of nanofibers and their controlled drug release properties. Journal of Polymer Science Part A, 2019, 57, 1580-1586.	2.5	16

#	Article	IF	CITATIONS
73	Post-polymerization modification of Poly(vinylcyclopropanes): A potential route to periodic copolymers. European Polymer Journal, 2020, 122, 109319.	2.6	16
74	Post-polymerization modification of polymeric active esters towards TEMPO containing polymers: A systematic study. European Polymer Journal, 2020, 130, 109660.	2.6	16
75	Spin fluorescence silencing enables an efficient thermally driven self-reporting polymer release system. Polymer Chemistry, 2017, 8, 6199-6203.	1.9	15
76	A Guanidine-Based Superbase as Efficient Chemiluminescence Booster. Scientific Reports, 2019, 9, 14519.	1.6	15
77	Getting the Terms Right: Green, Sustainable, or Circular Chemistry?. Macromolecular Chemistry and Physics, 2022, 223, .	1.1	15
78	A Bioinspired Hierarchical Underwater Superoleophobic Surface with Reversible pH Response. Advanced Materials Interfaces, 2020, 7, 2000101.	1.9	14
79	Postpolymerization modification of reactive polymers derived from vinylcyclopropane. III. Polymer sequential functionalization using a combination of amines with alkoxyamines, hydrazides, isocyanates, or acyl halides. Journal of Polymer Science Part A, 2014, 52, 2841-2849.	2.5	13
80	A synthetic approach toward a pH and sugar-responsive diblock copolymer <i>via</i> post-polymerization modification. Polymer Chemistry, 2018, 9, 3355-3358.	1.9	13
81	Synergy of Macrocycles and Macromolecular Topologies: An Efficient [3 _{<i>4</i>}]Triazolophane-Based Synthesis of Cage-Shaped Polymers. ACS Macro Letters, 2020, 9, 700-705.	2.3	13
82	Degradable Redox-Responsive Polyolefins. Macromolecules, 2021, 54, 1775-1782.	2.2	13
83	Interrupted CuAAC Ligation: An Efficient Approach to Fluorescence Labeled Three-Armed Mikto Star Polymers. Macromolecules, 2018, 51, 2682-2689.	2.2	12
84	A CO ₂ -gated anodic aluminum oxide based nanocomposite membrane for de-emulsification. Nanoscale, 2020, 12, 21316-21324.	2.8	12
85	Conductive hydrogel composites with autonomous self-healing properties. Soft Matter, 2020, 16, 10969-10976.	1.2	11
86	Reactive nanorods based on activated esterpolymers: a versatile template-assisted approach for the fabrication of functional nanorods. Polymer Chemistry, 2011, 2, 645-650.	1.9	10
87	Soft Matter Technology at KIT: Chemical Perspective from Nanoarchitectures to Microstructures. Advanced Materials, 2019, 31, e1806334.	11.1	10
88	Oxygen-switchable thermo-responsive polymers with unprecedented UCST in water. European Polymer Journal, 2021, 142, 110156.	2.6	10
89	Synthesis and characterization of polymers from soybean oil and <i>p</i> â€dinitrosobenzene. Journal of Applied Polymer Science, 2009, 113, 1925-1934.	1.3	9
90	Untapped toolbox of luminol based polymers. Polymer Chemistry, 2021, 12, 1732-1748.	1.9	8

#	Article	IF	CITATIONS
91	Structural design of pyrene-functionalized TEMPO-containing polymers for enhanced electrochemical storage performance. Polymer Chemistry, 2021, 12, 2643-2650.	1.9	8
92	The power of architecture – <i>cage</i> -shaped PEO and its application as a polymer electrolyte. Polymer Chemistry, 2021, 12, 4326-4331.	1.9	8
93	Dual-faced borax mediated synthesis of self-healable hydrogels merging dynamic covalent bonding and micellization. Polymer Chemistry, 2021, 12, 361-369.	1.9	7
94	Fully independent photochemical reactivity in one molecule. Chemical Communications, 2019, 55, 9877-9880.	2.2	6
95	Chemiluminescent self-reporting supramolecular transformations on macromolecular scaffolds. Polymer Chemistry, 2020, 11, 4213-4220.	1.9	6
96	Modification of polybutadiene with trifluoromethyl and clickable azide groups in one shot. Polymer Chemistry, 2021, 12, 5589-5597.	1.9	6
97	Intercalating Electron Dyes for TEM Visualization of DNA at the Singleâ€Molecule Level. ChemBioChem, 2019, 20, 822-830.	1.3	5
98	Acyclic Diene Metathesis (ADMET) Polymerization of 2,2,6,6â€Tetramethylpiperidineâ€1â€sulfanyl (TEMPS) Dimers. Macromolecular Rapid Communications, 2021, 42, e2100118.	2.0	5
99	Synthesis and Postâ€Polymerization Modification of Poly(N â€(4â€Vinylphenyl)Sulfonamide)s. Macromolecular Rapid Communications, 2021, 42, 2100063.	2.0	4
100	Synthesis and Postâ€Polymerization Modification of Defined Functional Poly(vinyl ether)s. Macromolecular Rapid Communications, 2021, 42, 2100133.	2.0	4
101	Elemental Sulfur Mediated Novel Multicomponent Redox Polycondensation for the Synthesis of Alternating Copolymers Based on 2,4â€Thiophene/Arene Repeating Units. Macromolecular Rapid Communications, 2021, 42, e2000695.	2.0	4
102	Light induced polyethylene ligation. Polymer Chemistry, 2018, 9, 3633-3637.	1.9	3
103	The Vibrant Interplay of Light and Selfâ€Reporting Macromolecular Architectures. Macromolecular Chemistry and Physics, 2021, 222, 2100057.	1.1	3
104	Synthesis and post-polymerization modification of poly(propargyl 2-ylidene-acetate). European Polymer Journal, 2021, 156, 110564.	2.6	3
105	Cageâ€Shaped Polymers Synthesis: A Comprehensive Stateâ€ofâ€theâ€Art. Macromolecular Rapid Communications, 2022, 43, e2100760.	2.0	3
106	Pyreneâ€Tagged Chloro Oximes as Ambientâ€Lightâ€Accelerated Ligation Agents. ChemPhotoChem, 2019, 3, 66-70.	1.5	2
107	Vorbeugen oder Heilen – die beispiellose Notwendigkeit von selbstberichtenden Materialien. Angewandte Chemie, 2021, 133, 17430-17454.	1.6	1
108	Passerini Multicomponent Reactions Enabling Self-Reporting Photosensitive Tetrazole Polymers. ACS Macro Letters, 2021, 10, 1159-1166.	2.3	1

#	Article	IF	CITATIONS
109	Synthesis and Characterization of Novel Isosorbideâ€Based Polyester Derivatives Decorated with <i>α</i> â€Acyloxy Amides. Macromolecular Chemistry and Physics, 2022, 223, .	1.1	1
110	Frontispiece: Contemporary Photoligation Chemistry: The Visible Light Challenge. Chemistry - A European Journal, 2019, 25, .	1.7	0
111	Chemical design and synthesis of macromolecular profluorescent nitroxide systems as self-reporting probes. Polymer Chemistry, 2022, 13, 1648-1657.	1.9	Ο
112	Introduction to the themed collection on synthetic methodologies for complex macromolecular structures in honour of Prof. Yusuf Yagci's 70 th birthday. Polymer Chemistry, 2022, 13, 1456-1457.	1.9	0
113	Poly(pentafluorobenzyl 2â€ylideneâ€acetate): Polymerization and Postpolymerization Modification. Macromolecular Chemistry and Physics, 0, , 2100455.	1.1	Ο
114	Teaching an Old Dog New Tricks: Sustainable Polymers. Macromolecular Chemistry and Physics, 2022, 223, .	1.1	0