Lianyi Shao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4637546/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A low-cost NiSe2 derived from waste nickel foam as a high-performance anode for sodium ion batteries. Materials Today Physics, 2022, 22, 100593.	6.0	25
2	Space-confined engineering boosted high-performance of ultrafine nickel selenide nanocomposites for sodium-ion capacitors. Materials Today Sustainability, 2022, 18, 100151.	4.1	8
3	Microwave-assisted hydrothermal synthesis of three-dimensional NbOPO4-reduced graphene oxide-carbon nanotube composite for high performance sodium-ion battery anode. Journal of Power Sources, 2022, 539, 231457.	7.8	31
4	Trash to treasure: Carbon-free ZnSe derived from waste zinc foil as a high-rate and long-life anode material enabling fast-charging sodium-ion batteries. Journal of Power Sources, 2022, 542, 231801.	7.8	10
5	Pampas grass-inspired FeOOH nanobelts as high performance anodes for sodium ion batteries. Journal of Energy Chemistry, 2021, 54, 138-142.	12.9	28
6	Urchin-like FeS2 hierarchitectures wrapped with N-doped multi-wall carbon nanotubes@rGO as high-rate anode for sodium ion batteries. Journal of Power Sources, 2021, 491, 229627.	7.8	44
7	Niobium Carbide as a Promising Pseudocapacitive Sodiumâ€lon Storage Anode. Energy Technology, 2021, 9, 2100298.	3.8	20
8	Highly infiltrative micro-sized Cu2Se as advanced material with excellent rate performance and ultralong cycle-life for sodium ion half/full batteries. Materials Today Physics, 2021, 19, 100422.	6.0	21
9	"Carbon quantum dots-glue―enabled high-capacitance and highly stable nickel sulphide nanosheet electrode for supercapacitors. Journal of Colloid and Interface Science, 2021, 601, 669-677.	9.4	37
10	Hierarchical MoS ₂ –NiS nanosheet-based nanotubes@N-doped carbon coupled with ether-based electrolytes towards high-performance Na-ion batteries. Journal of Materials Chemistry A, 2021, 9, 27072-27083.	10.3	28
11	Robust Strategy of Quasi-Solid-State Electrolytes to Boost the Stability and Compatibility of Mg Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 54711-54719.	8.0	20
12	Metal–Organic-Framework-Derived N-, P-, and O-Codoped Nickel/Carbon Composites Homogeneously Decorated on Reduced Graphene Oxide for Energy Storage. ACS Applied Nano Materials, 2020, 3, 5625-5636.	5.0	33
13	Na ₃ V ₂ (PO ₄) ₂ F ₃ –SWCNT: a high voltage cathode for non-aqueous and aqueous sodium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 248-256.	10.3	111
14	Facile preparation of NH ₂ -functionalized black phosphorene for the electrocatalytic hydrogen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 2494-2499.	10.3	149
15	Rechargeable Na-CO ₂ Batteries Starting from Cathode of Na ₂ CO ₃ and Carbon Nanotubes. Research, 2018, 2018, 6914626.	5.7	32
16	MnOOH nanorods as high-performance anodes for sodium ion batteries. Chemical Communications, 2017, 53, 2435-2438.	4.1	40
17	Li 3-x Na x V 2 (PO 4) 3 (0≤â‰\$): Possible anode materials for rechargeable lithium-ion batteries. Electrochimica Acta, 2016, 200, 1-11.	5.2	9
18	Phase diagram and electrochemical behavior of lithium sodium vanadium phosphates cathode materials for lithium ion batteries. Ceramics International, 2015, 41, 5164-5171.	4.8	21