Andrzej Kolezynski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4637451/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Experimental and Theoretical Studies on Possibility of Void Filling by Magnesium in Mg-Doped Tetrahedrites. Materials, 2022, 15, 4115.	2.9	0
2	Si–O–C amorphous coatings as a perspective protection against oxidation-caused degradation of Cu2S superionic thermoelectric materials. Ceramics International, 2021, 47, 12992-12996.	4.8	1
3	Thermoelectric Properties of Cu2Se Synthesized by Hydrothermal Method and Densified by SPS Technique. Materials, 2021, 14, 3650.	2.9	15
4	Vibrational Spectra of Zeolite Y as a Function of Ion Exchange. Molecules, 2021, 26, 342.	3.8	18
5	Extremely Fast and Cheap Densification of Cu2S by Induction Melting Method. Materials, 2021, 14, 7311.	2.9	1
6	Application of TPO/TPR methods in oxidation investigations of CoSb3 and Mg2Si thermoelectrics with and without a protective coating of "black glass― Journal of Thermal Analysis and Calorimetry, 2020, 140, 2657-2666.	3.6	2
7	Structural, thermoelectric and stability studies of Fe-doped copper sulfide. Solid State Ionics, 2020, 350, 115322.	2.7	15
8	Thermoelectric properties of Cu2S obtained by high temperature synthesis and sintered by IHP method. Ceramics International, 2020, 46, 25460-25466.	4.8	28
9	Molecular mechanics modelling of amorphous silicon oxycarbide clusters by bottom-up approach. Journal of Molecular Structure, 2020, 1208, 127930.	3.6	4
10	Si-O-C amorphous coatings for high temperature protection of In0.4Co4Sb12 skutterudite for thermoelectric applications. Journal of Applied Physics, 2019, 125, 215113.	2.5	14
11	First principles studies of Fe-doped Cu2S – Theoretical investigation. Solid State Ionics, 2019, 334, 36-42.	2.7	5
12	Self-compensating defects in AgSbTe2 from first principles studies. Journal of Alloys and Compounds, 2019, 787, 1136-1142.	5.5	5
13	New high temperature amorphous protective coatings for Mg2Si thermoelectric material. Ceramics International, 2019, 45, 10230-10235.	4.8	24
14	The structural, microstructural and thermoelectric properties of Mg2Si synthesized by SPS method under excess Mg content conditions. Journal of Alloys and Compounds, 2019, 775, 138-149.	5.5	17
15	Vibrational Spectroscopy of Zeolites. Challenges and Advances in Computational Chemistry and Physics, 2019, , 301-332.	0.6	1
16	Computational Methods in Spectroscopy. Challenges and Advances in Computational Chemistry and Physics, 2019, , 1-48.	0.6	0
17	New approach for determination of the influence of long-range order and selected ring oscillations on IR spectra in zeolites. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 195, 62-67.	3.9	7
18	Electronic structure and structural properties of Cr-doped SrTiO3 – Theoretical investigation. Journal of Alloys and Compounds, 2018, 749, 931-938.	5.5	12

ANDRZEJ KOLEZYNSKI

#	Article	IF	CITATIONS
19	The structure of geopolymers – Theoretical studies. Journal of Molecular Structure, 2018, 1163, 465-471.	3.6	59
20	Theoretical studies of cation sublattice ordering in AgSbTe2 and AgSbSe2 – Electron density topology and bonding properties. Journal of Alloys and Compounds, 2018, 732, 293-299.	5.5	4
21	The structure, electrical properties and chemical stability of porous Nb-doped SrTiO ₃ – experimental and theoretical studies. RSC Advances, 2017, 7, 28898-28908.	3.6	25
22	Bismuth doped Mg 2 Si with improved homogeneity: Synthesis, characterization and optimization of thermoelectric properties. Journal of Physics and Chemistry of Solids, 2017, 103, 147-159.	4.0	23
23	HPHT synthesis of highly doped InxCo4Sb12 – Experimental and theoretical study. Journal of Alloys and Compounds, 2017, 727, 1178-1188.	5.5	16
24	Towards band gap engineering in skutterudites: The role of X4 rings geometry in CoSb3-RhSb3 system. Journal of Alloys and Compounds, 2017, 691, 299-307.	5.5	11
25	Experimental and theoretical studies of structural and electrical properties of highly porous Sr 1-x Y x TiO 3. Solid State Ionics, 2017, 302, 173-179.	2.7	21
26	Structural and Thermoelectric Properties of Polycrystalline p-Type Mg2â^'x Li x Si. Journal of Electronic Materials, 2016, 45, 3418-3426.	2.2	15
27	Experimental and theoretical spectroscopic studies of Ag-, Cd- and Pb-sodalite. Journal of Molecular Structure, 2016, 1126, 110-116.	3.6	14
28	Theoretical and Experimental Study on Thermoelectric Properties of Ba8TM x Ga y Ge46–x–y (TMÂ=ÂZn,) T	j ET <u>Q</u> 0 0 2.2	0 rgBT /Overlc
29	Periodic model of LTA framework containing various non-tetrahedral cations. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2016, 157, 17-25.	3.9	5
30	First-Principles Study of the Electronic Structure and Bonding Properties of X8C46 and X8B6C40 (X:) Tj ETQq0	0 0 rgBT /0	Overlock 10 Tf
31	Studies on high pressure-high temperature synthesis of carbon clathrates. , 2016, , 512-513.	0.1	Ο
32	Li doped Mg2Si p-type thermoelectric material: Theoretical and experimental study. Computational Materials Science, 2015, 100, 84-88.	3.0	14
33	The influence of the long-range order on the vibrational spectra of structures based on sodalite cage. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 144, 273-280.	3.9	19
34	Periodic model of an LTA framework. Journal of Molecular Modeling, 2015, 21, 275.	1.8	5
35	Theoretical and experimental spectroscopic studies of Bi dopant location in Mg2Si. Vibrational Spectroscopy, 2015, 76, 31-37.	2.2	8
36	Vibrational spectra of a baghdadite synthetic analogue. Vibrational Spectroscopy, 2015, 76, 1-5.	2.2	11

ANDRZEJ KOLEZYNSKI

#	Article	IF	CITATIONS
37	Theoretical studies of electronic structure and structural properties of anhydrous alkali metal oxalates. Journal of Thermal Analysis and Calorimetry, 2014, 115, 841-852.	3.6	2
38	Theoretical studies of bonding properties and vibrational spectra of chosen ladder-like silsesquioxane clusters. Journal of Molecular Structure, 2014, 1075, 599-604.	3.6	7
39	Theoretical studies of electronic structure and structural properties of anhydrous alkali metal oxalates. Journal of Thermal Analysis and Calorimetry, 2013, 114, 1391-1399.	3.6	3
40	Crystal structure, electronic structure, and bonding properties of anhydrous nickel oxalate. Journal of Thermal Analysis and Calorimetry, 2013, 113, 319-328.	3.6	25
41	The structure and bonding properties of chosen phenyl ladder-like silsesquioxane clusters. Journal of Molecular Structure, 2013, 1044, 314-322.	3.6	16
42	Thermoelectric properties of polycrystalline type-I germanium clathrates Ba8Ga16-xGe30+x. , 2012, , .		0
43	Electronic and transport properties of polycrystalline Ba8Ga15Ge31 type I clathrate prepared by SPS method. Journal of Solid State Chemistry, 2012, 193, 114-121.	2.9	9
44	The concepts of an atom and chemical bond in physics and chemistry: the role of approximations. Semina Scientiarum, 2011, 10, 31.	0.1	0
45	Theoretical analysis of electronic and structural properties of anhydrous calcium oxalate. Journal of Thermal Analysis and Calorimetry, 2010, 99, 947-955.	3.6	8
46	Theoretical studies of electronic and crystal structure properties of anhydrous mercury oxalate. Journal of Thermal Analysis and Calorimetry, 2010, 101, 499-504.	3.6	8
47	FP-LAPW study of anhydrous cadmium and silver oxalates: electronic structure and electron density topology. Physica B: Condensed Matter, 2010, 405, 3650-3657.	2.7	14
48	Theoretical studies of thermal decomposition of anhydrous cadmium and silver oxalates. Journal of Thermal Analysis and Calorimetry, 2009, 96, 161-165.	3.6	9
49	Theoretical studies of thermal decomposition of anhydrous cadmium and silver oxalates. Journal of Thermal Analysis and Calorimetry, 2009, 96, 167-173.	3.6	13
50	First principles studies of thermal decomposition of anhydrous zinc oxalate. Journal of Thermal Analysis and Calorimetry, 2009, 96, 645-651.	3.6	18
51	Theoretical approach to thermal decomposition process of chosen anhydrous oxalates. Journal of Thermal Analysis and Calorimetry, 2009, 97, 77-83.	3.6	12
52	From the Molecular Picture to the Band Structure of Cubic and Tetragonal Barium Titanate. Ferroelectrics, 2005, 314, 123-134.	0.6	22
53	Phase Transitions in BaTiO3from IR Autocorrelation Spectrum. Ferroelectrics, 2005, 315, 73-81.	0.6	5
54	Crystal-chemical aspects of phase transitions in barium titanate. Solid State Communications, 2003, 127, 557-562.	1.9	20

ANDRZEJ KOLEZYNSKI

#	Article	IF	CITATIONS
55	Effective crystal potential from electronegativity viewpoint. International Journal of Quantum Chemistry, 2003, 91, 311-316.	2.0	0
56	Pauling's electrostatic rule for partially covalent/partially ionic crystals. Journal of Physics and Chemistry of Solids, 2000, 61, 1847-1853.	4.0	12
57	Chemical bond in ferroelectric perovskites. Ferroelectrics, 2000, 237, 57-64.	0.6	19
58	Overlapping shells model applied to diamondlike crystals. International Journal of Quantum Chemistry, 1997, 61, 741-746.	2.0	0
59	Electron density in metallic crystal as an extremal with moving boundaries. International Journal of Quantum Chemistry, 1997, 62, 543-549.	2.0	0
60	Anderson-Parr force gradient model in the description of diatomic molecules: charge transfer. Computational and Theoretical Chemistry, 1996, 362, 331-338.	1.5	0
61	Model potentials in studies of atomic electron density distribution. International Journal of Quantum Chemistry, 1996, 57, 1097-1106.	2.0	9
62	Functional derivative ?E/?? in calculation of chemical potential for the Kohn-Sham electronic system. International Journal of Quantum Chemistry, 1994, 51, 569-575.	2.0	4
63	Effective crystal field approach to the binding energy calculation of alkaline metals. International Journal of Quantum Chemistry, 1994, 52, 321-328.	2.0	3
64	Model Studies of Microstructure Changes in Sintering of Ceramics. Solid State Phenomena, 0, 147-149, 890-895.	0.3	1