
Nicola Taccardi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4637404/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Oxidative Depolymerization of Lignin in Ionic Liquids. ChemSusChem, 2010, 3, 719-723.	6.8	213
2	Selective catalytic conversion of biobased carbohydrates to formic acid using molecular oxygen. Green Chemistry, 2011, 13, 2759.	9.0	176
3	N-substituted diphosphinoamines: Toward rational ligand design for the efficient tetramerization of ethylene. Journal of Catalysis, 2007, 245, 279-284.	6.2	90
4	Development and characterization of magnetic iron oxide nanoparticles with a cisplatin-bearing polymer coating for targeted drug delivery. International Journal of Nanomedicine, 2014, 9, 3659.	6.7	90
5	Operando DRIFTS and DFT Study of Propane Dehydrogenation over Solid- and Liquid-Supported Ga _{<i>x</i>} Pt _{<i>y</i>} Catalysts. ACS Catalysis, 2019, 9, 2842-2853.	11.2	83
6	Highly Effective Propane Dehydrogenation Using Ga–Rh Supported Catalytically Active Liquid Metal Solutions. ACS Catalysis, 2019, 9, 9499-9507.	11.2	76
7	Synthesis of copper-containing bioactive glass nanoparticles using a modified Stöber method for biomedical applications. Colloids and Surfaces B: Biointerfaces, 2017, 150, 159-167.	5.0	73
8	Noble Metals on Anodic TiO ₂ Nanotube Mouths: Thermal Dewetting of Minimal Pt Co atalyst Loading Leads to Significantly Enhanced Photocatalytic H ₂ Generation. Advanced Energy Materials, 2016, 6, 1501926.	19.5	72
9	Antioxidant mesoporous Ce-doped bioactive glass nanoparticles with anti-inflammatory and pro-osteogenic activities. Materials Today Bio, 2020, 5, 100041.	5.5	66
10	Timing of calcium nitrate addition affects morphology, dispersity and composition of bioactive glass nanoparticles. RSC Advances, 2016, 6, 95101-95111.	3.6	64
11	Toward Highly Dispersed Mesoporous Bioactive Glass Nanoparticles With High Cu Concentration Using Cu/Ascorbic Acid Complex as Precursor. Frontiers in Chemistry, 2019, 7, 497.	3.6	55
12	Organic Reactions in Ionic Liquids Studied by in Situ XPS. ChemPhysChem, 2012, 13, 1725-1735.	2.1	50
13	ZnO quantum dots modified bioactive glass nanoparticles with pH-sensitive release of Zn ions, fluorescence, antibacterial and osteogenic properties. Journal of Materials Chemistry B, 2016, 4, 7936-7949.	5.8	44
14	Interactions Between the Room-Temperature Ionic Liquid [C ₂ C ₁ Im][OTf] and Pd(111), Well-Ordered Al ₂ O ₃ , and Supported Pd Model Catalysts from IR Spectroscopy. Journal of Physical Chemistry C, 2014, 118, 3188-3193.	3.1	43
15	Liquidâ€Liquid Biphasic, Platinumâ€Catalyzed Hydrosilylation of Allyl Chloride with Trichlorosilane using an Ionic Liquid Catalyst Phase in a Continuous Loop Reactor. Advanced Synthesis and Catalysis, 2008, 350, 2599-2609.	4.3	41
16	Influence of the Counterion on the Synthesis of ZnO Mesocrystals under Solvothermal Conditions. Chemistry - A European Journal, 2011, 17, 2923-2930.	3.3	39
17	Influence of Substituents and Functional Groups on the Surface Composition of Ionic Liquids. Chemistry - A European Journal, 2014, 20, 3954-3965.	3.3	37
18	Complementary Molecular Dynamics and X-ray Reflectivity Study of an Imidazolium-Based Ionic Liquid at a Neutral Sapphire Interface. Journal of Physical Chemistry Letters, 2015, 6, 549-555.	4.6	37

NICOLA TACCARDI

#	Article	IF	CITATIONS
19	Functionalization of Oxide Surfaces through Reaction with 1,3-Dialkylimidazolium Ionic Liquids. Journal of Physical Chemistry Letters, 2013, 4, 30-35.	4.6	36
20	Photochemistry in a soft-glass single-ring hollow-core photonic crystal fibre. Analyst, The, 2017, 142, 925-929.	3.5	35
21	Chloride based ionic liquids as promoting agents for Meerwein reaction in solventless conditions. Tetrahedron Letters, 2006, 47, 4759-4762.	1.4	31
22	Chemical and (Photo) atalytical Transformations in Photonic Crystal Fibers. ChemCatChem, 2013, 5, 641-650.	3.7	30
23	Incorporation of Boron in Mesoporous Bioactive Glass Nanoparticles Reduces Inflammatory Response and Delays Osteogenic Differentiation. Particle and Particle Systems Characterization, 2020, 37, 2000054.	2.3	30
24	Ionic Liquids as Reaction Media for Palladium-Catalysed Cross-Coupling of Aryldiazonium Tetrafluoroborates with Potassium Organotrifluoroborates. European Journal of Inorganic Chemistry, 2005, 2005, 582-588.	2.0	29
25	Biodegradable nanostructures: Degradation process and biocompatibility of iron oxide nanostructured arrays. Materials Science and Engineering C, 2018, 85, 203-213.	7.3	28
26	GaPt Supported Catalytically Active Liquid Metal Solution Catalysis for Propane Dehydrogenation–Support Influence and Coking Studies. ACS Catalysis, 2021, 11, 13423-13433.	11.2	28
27	Coke Formation during Propane Dehydrogenation over Gaâ´'Rh Supported Catalytically Active Liquid Metal Solutions. ChemCatChem, 2020, 12, 1085-1094.	3.7	24
28	Ultra‣ow Concentration Monitoring of Catalytic Reactions in Photonic Crystal Fiber. Chemistry - A European Journal, 2012, 18, 1586-1590.	3.3	23
29	Interactions of Imidazoliumâ€Based Ionic Liquids with Oxide Surfaces Controlled by Alkyl Chain Functionalization. ChemPhysChem, 2013, 14, 3673-3677.	2.1	22
30	Interface Controls Spontaneous Crystallization in Thin Films of the Ionic Liquid [C ₂ C ₁ Im][OTf] on Atomically Clean Pd(111). Langmuir, 2014, 30, 6846-6851.	3.5	22
31	Redox chemistry, solubility, and surface distribution of Pt(II) and Pt(IV) complexes dissolved in ionic liquids. Journal of Molecular Liquids, 2014, 192, 103-113.	4.9	22
32	On the Mechanism of Palladium-Catalyzed Cross-Coupling of Diazonium Salts with Aryltrifluoroborates: A Combined ESI-MS/NMR Study. European Journal of Inorganic Chemistry, 2007, 2007, 4645-4652.	2.0	21
33	Spectroscopic Observation and Molecular Dynamics Simulation of Ga Surface Segregation in Liquid Pd–Ga Alloys. Chemistry - A European Journal, 2017, 23, 17701-17706.	3.3	19
34	Surface enrichment of Pt in Ga2O3 films grown on liquid Pt/Ga alloys. Surface Science, 2016, 651, 16-21.	1.9	18
35	Structural and functional dissection reveals distinct roles of Ca2+-binding sites in the giant adhesin SiiE of Salmonella enterica. PLoS Pathogens, 2017, 13, e1006418.	4.7	18
36	Highly Selective Synthesis of Acrylic Acid from Lactide in the Liquid Phase. ChemSusChem, 2018, 11, 2936-2943.	6.8	18

NICOLA TACCARDI

#	Article	IF	CITATIONS
37	Pd Nanoparticle Formation in Ionic Liquid Thin Films Monitored by in situ Vibrational Spectroscopy. Langmuir, 2015, 31, 12126-12139.	3.5	17
38	Stable and Selective Dehydrogenation of Methylcyclohexane using Supported Catalytically Active Liquid Metal Solutions – Ga ₅₂ Pt/SiO ₂ SCALMS. ChemCatChem, 2020, 12, 4533-4537.	3.7	17
39	Boron containing magnetic nanoparticles for neutron capture therapy– an innovative approach for specifically targeting tumors. Applied Radiation and Isotopes, 2015, 106, 151-155.	1.5	16
40	Capturing spatially resolved kinetic data and coking of Ga–Pt supported catalytically active liquid metal solutions during propane dehydrogenation <i>in situ</i> . Faraday Discussions, 2021, 229, 359-377.	3.2	16
41	Oxide Growth Efficiencies and Self-Organization of TiO ₂ Nanotubes. Journal of the Electrochemical Society, 2012, 159, H697-H703.	2.9	15
42	Cyclic Thiouronium Ionic Liquids: Physicochemical Properties and their Electronic Structure Probed by Xâ€Ray Induced Photoelectron Spectroscopy. Chemistry - A European Journal, 2012, 18, 8288-8291.	3.3	15
43	Reactions of a Polyhalide Ionic Liquid with Copper, Silver, and Gold. ChemistryOpen, 2019, 8, 15-22.	1.9	15
44	Optimized Polymer Electrolyte Membrane Fuel Cell Electrode Using TiO ₂ Nanotube Arrays with Well-Defined Spacing. ACS Applied Nano Materials, 2020, 3, 4157-4170.	5.0	14
45	Ga–Ni supported catalytically active liquid metal solutions (SCALMS) for selective ethylene oligomerization. Catalysis Science and Technology, 2021, 11, 7535-7539.	4.1	14
46	Vacuum Surface Science Meets Heterogeneous Catalysis: Dehydrogenation of a Liquid Organic Hydrogen Carrier in the Liquid State. ChemPhysChem, 2015, 16, 1873-1879.	2.1	13
47	Catalyst recycling in monophasic Pt-catalyzed hydrosilylation reactions using ionic liquids. Applied Catalysis A: General, 2011, 399, 69-74.	4.3	12
48	In Situ Heterogeneous Catalysis Monitoring in a Hollowâ€Core Photonic Crystal Fiber Microflow Reactor. Advanced Materials Interfaces, 2014, 1, 1300093.	3.7	12
49	Acrylic Acid Synthesis from Lactide in a Continuous Liquid-Phase Process. ACS Sustainable Chemistry and Engineering, 2019, 7, 7140-7147.	6.7	12
50	Scavenging of bacteria or bacterial products by magnetic particles functionalized with a broad-spectrum pathogen recognition receptor motif offers diagnostic and therapeutic applications. Acta Biomaterialia, 2022, 141, 418-428.	8.3	11
51	CO Permeability and Wetting Behavior of Ionic Liquids on Pt(111): An IRAS and PM-IRAS Study from Ultrahigh Vacuum to Ambient Pressure. Journal of Physical Chemistry C, 2021, 125, 15301-15315.	3.1	9
52	Adsorption Motifs and Molecular Orientation at the Ionic Liquid/Noble Metal Interface: [C ₂ C ₁ Im][NTf ₂] on Pt(111). Langmuir, 2021, 37, 12596-12607.	3.5	9
53	Unraveling Structural Details in Ga-Pd SCALMS Systems Using Correlative Nano-CT, 360° Electron Tomography and Analytical TEM. Catalysts, 2021, 11, 810.	3.5	7
54	SPIONs functionalized with small peptides for binding of lipopolysaccharide, a pathophysiologically relevant microbial product. Colloids and Surfaces B: Biointerfaces, 2019, 174, 95-102.	5.0	6

NICOLA TACCARDI

#	Article	IF	CITATIONS
55	Zwitterionic Hydrobromic Acid Carriers for the Synthesis of 2â€Bromopropionic Acid from Lactide. ChemSusChem, 2018, 11, 1063-1072.	6.8	5
56	Interaction between Ionic Liquids and a Pt(111) Surface Probed by Coadsorbed CO as a Test Molecule. Journal of Physical Chemistry Letters, 2021, 12, 10079-10085.	4.6	5
57	Correlative 3D-Characterization of Liquid Metal Catalysts (LMC) utilizing X-ray and Analytical Electron Microscopy. Microscopy and Microanalysis, 2018, 24, 556-557.	0.4	3
58	Structural Analysis of Liquid Metal Catalysts in Porous Silica Utilizing Nano-CT and Analytical Transmission Electron Microscopy. Microscopy and Microanalysis, 2019, 25, 422-423.	0.4	3
59	Inside Back Cover: Monitoring of Liquid-Phase Organic Reactions by Photoelectron Spectroscopy (Angew. Chem. Int. Ed. 11/2012). Angewandte Chemie - International Edition, 2012, 51, 2783-2783.	13.8	0
60	Inside Cover: Organic Reactions in Ionic Liquids Studied by in Situ XPS (ChemPhysChem 7/2012). ChemPhysChem, 2012, 13, 1602-1602.	2.1	0