
Pute Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4637353/publications.pdf Version: 2024-02-01

Ριιτε \λ/ιι

#	Article	IF	CITATIONS
1	Sustainability assessment of regional water resources under the DPSIR framework. Journal of Hydrology, 2016, 532, 140-148.	5.4	161
2	Effects of rainfall intensity, underlying surface and slope gradient on soil infiltration under simulated rainfall experiments. Catena, 2013, 104, 93-102.	5.0	153
3	Temporal and spatial evolution of the standardized precipitation evapotranspiration index (SPEI) in the Loess Plateau under climate change from 2001 to 2050. Science of the Total Environment, 2017, 595, 191-200.	8.0	142
4	The impacts of interannual climate variability and agricultural inputs on water footprint of crop production in an irrigation district of China. Science of the Total Environment, 2013, 444, 498-507.	8.0	136
5	EFFECTS OF LAND USE ON SOIL MOISTURE VARIATIONS IN A SEMIâ€ARID CATCHMENT: IMPLICATIONS FOR LAND AND AGRICULTURAL WATER MANAGEMENT. Land Degradation and Development, 2014, 25, 163-172.) _{3.9}	125
6	Soil moisture variability along transects over a well-developed gully in the Loess Plateau, China. Catena, 2011, 87, 357-367.	5.0	107
7	Soil Quality Indicators in Relation to Land Use and Topography in a Small Catchment on the Loess Plateau of China. Land Degradation and Development, 2015, 26, 54-61.	3.9	106
8	Identifying a suitable revegetation technique for soil restoration on water-limited and degraded land: Considering both deep soil moisture deficit and soil organic carbon sequestration. Geoderma, 2018, 319, 61-69.	5.1	106
9	Changes in vegetation condition in areas with different gradients (1980–2010) on the Loess Plateau, China. Environmental Earth Sciences, 2013, 68, 2427-2438.	2.7	105
10	Water mining from the deep critical zone by apple trees growing on loess. Hydrological Processes, 2019, 33, 320-327.	2.6	96
11	A survey on wireless sensor network infrastructure for agriculture. Computer Standards and Interfaces, 2013, 35, 59-64.	5.4	89
12	Assessing China's agricultural water use efficiency in a green-blue water perspective: A study based on data envelopment analysis. Ecological Indicators, 2019, 96, 329-335.	6.3	77
13	Effects of virtual water flow on regional water resources stress: A case study of grain in China. Science of the Total Environment, 2016, 550, 871-879.	8.0	76
14	Deep soil water extraction by apple sequesters organic carbon via root biomass rather than altering soil organic carbon content. Science of the Total Environment, 2019, 670, 662-671.	8.0	76
15	Estimating spatial mean soil water contents of sloping jujube orchards using temporal stability. Agricultural Water Management, 2011, 102, 66-73.	5.6	73
16	An evaluation of the water utilization and grain production of irrigated and rain-fed croplands in China. Science of the Total Environment, 2015, 529, 10-20.	8.0	73
17	Radiation interception and utilization by wheat/maize strip intercropping systems. Agricultural and Forest Meteorology, 2015, 204, 58-66.	4.8	71
18	Drought variation trends in different subregions of the Chinese Loess Plateau over the past four decades. Agricultural Water Management, 2012, 115, 167-177.	5.6	66

#	Article	IF	CITATIONS
19	Quantitative study of the crop production water footprint using the SWAT model. Ecological Indicators, 2018, 89, 1-10.	6.3	65
20	Growth, yield, and nitrogen use in the wheat/maize intercropping system in an arid region of northwestern China. Field Crops Research, 2014, 167, 19-30.	5.1	64
21	Effects of large gullies on catchment-scale soil moisture spatial behaviors: A case study on the Loess Plateau of China. Geoderma, 2016, 261, 1-10.	5.1	62
22	Savings and losses of global water resources in foodâ€related virtual water trade. Wiley Interdisciplinary Reviews: Water, 2019, 6, e1320.	6.5	62
23	Maize–Soybean Intercropping Interactions Above and Below Ground. Crop Science, 2014, 54, 914-922.	1.8	61
24	A comprehensive analysis of blue water scarcity from the production, consumption, and water transfer perspectives. Ecological Indicators, 2017, 72, 870-880.	6.3	60
25	The dynamic effects of pastures and crop on runoff and sediments reduction at loess slopes under simulated rainfall conditions. Catena, 2014, 119, 1-7.	5.0	59
26	Development and evaluation of a physically based multiscalar drought index: The Standardized Moisture Anomaly Index. Journal of Geophysical Research D: Atmospheres, 2015, 120, 11,575.	3.3	59
27	New challenges of food security in Northwest China: Water footprint and virtual water perspective. Journal of Cleaner Production, 2020, 245, 118939.	9.3	59
28	Variation of soil infiltrability across a 79-year chronosequence of naturally restored grassland on the Loess Plateau, China. Journal of Hydrology, 2013, 504, 94-103.	5.4	58
29	Actual ET modelling based on the Budyko framework and the sustainability of vegetation water use in the loess plateau. Science of the Total Environment, 2017, 579, 1550-1559.	8.0	57
30	Border row effects on light interception in wheat/maize strip intercropping systems. Field Crops Research, 2017, 214, 1-13.	5.1	57
31	Exotic shrub species (Caragana korshinskii) is more resistant to extreme natural drought than native species (Artemisia gmelinii) in a semiarid revegetated ecosystem. Agricultural and Forest Meteorology, 2018, 263, 207-216.	4.8	57
32	Changes of soil hydraulic properties under early-stage natural vegetation recovering on the Loess Plateau of China. Catena, 2014, 113, 386-391.	5.0	56
33	The impact of urbanization and aging on food security in developing countries: The view from Northwest China. Journal of Cleaner Production, 2021, 292, 126067.	9.3	56
34	Spatial distribution of soil moisture and fine roots in rain-fed apple orchards employing a Rainwater Collection and Infiltration (RWCI) system on the Loess Plateau of China. Agricultural Water Management, 2017, 184, 170-177.	5.6	54
35	Impact of climate change and irrigation technology advancement on agricultural water use in China. Climatic Change, 2010, 100, 797-805.	3.6	53
36	Estimation of spatial soil moisture averages in a large gully of the Loess Plateau of China through statistical and modeling solutions. Journal of Hydrology, 2013, 486, 466-478.	5.4	52

#	Article	IF	CITATIONS
37	Simulated Study on Effects of Ground Managements on Soil Water and Available Nutrients in Jujube Orchards. Land Degradation and Development, 2016, 27, 35-42.	3.9	52
38	Soil water effects of agroforestry in rainfed jujube (Ziziphus jujube Mill.) orchards on loess hillslopes in Northwest China. Agriculture, Ecosystems and Environment, 2017, 247, 343-351.	5.3	52
39	Extreme natural drought enhances interspecific facilitation in semiarid agroforestry systems. Agriculture, Ecosystems and Environment, 2018, 265, 444-453.	5.3	52
40	Effects of water limitation on yield advantage and water use in wheat (Triticum aestivum L.)/maize (Zea) Tj ETQq0	0 0 rgBT 4.1	Qverlock 10
41	Soil Water Content and Root Patterns in a Rainâ€fed Jujube Plantation across Stand Ages on the Loess Plateau of China. Land Degradation and Development, 2017, 28, 207-216.	3.9	50
42	Effects of water collection and mulching combinations on water infiltration and consumption in a semiarid rainfed orchard. Journal of Hydrology, 2018, 558, 432-441.	5.4	49
43	Agronomic Characteristics and Grain Yield of 30 Spring Wheat Genotypes under Drought Stress and Nonstress Conditions. Agronomy Journal, 2011, 103, 1619-1628.	1.8	47
44	The Temporal-Spatial Characteristics of Drought in the Loess Plateau Using the Remote-Sensed TRMM Precipitation Data from 1998 to 2014. Remote Sensing, 2018, 10, 838.	4.0	47
45	Determining Regional-Scale Groundwater Recharge with GRACE and GLDAS. Remote Sensing, 2019, 11, 154.	4.0	47
46	Comprehensive evaluation of water use in agricultural production: a case study in Hetao Irrigation District, China. Journal of Cleaner Production, 2016, 112, 4569-4575.	9.3	45
47	Water for maize for pigs for pork: An analysis of inter-provincial trade in China. Water Research, 2019, 166, 115074.	11.3	45
48	Estimating the spatial means and variability of root-zone soil moisture in gullies using measurements from nearby uplands. Journal of Hydrology, 2013, 476, 28-41.	5.4	43
49	Age- and climate- related water use patterns of apple trees on China's Loess Plateau. Journal of Hydrology, 2020, 582, 124462.	5.4	41
50	Drought responses of profile plant-available water and fine-root distributions in apple (Malus pumila) Tj ETQq0 0 0 137739.) rgBT /Ov 8.0	erlock 10 Tf 41
51	Runoff and sediment yield under simulated rainfall on hillslopes in the Loess Plateau of China. Soil Research, 2013, 51, 50.	1.1	39
52	Assessing the spatial and temporal variation of the rainwater harvesting potential (1971-2010) on the Chinese Loess Plateau using the VIC model. Hydrological Processes, 2014, 28, 534-544.	2.6	39
53	Water Footprint of Grain Product in Irrigated Farmland of China. Water Resources Management, 2014, 28, 2213-2227.	3.9	39
54	Evaluation of crop production, trade, and consumption from the perspective of water resources: A case study of the Hetao irrigation district, China, for 1960–2010. Science of the Total Environment, 2015, 505, 1174-1181.	8.0	39

4

Pute Wu

#	Article	IF	CITATIONS
55	Effects of alfalfa coverage on runoff, erosion and hydraulic characteristics of overland flow on loess slope plots. Frontiers of Environmental Science and Engineering in China, 2011, 5, 76-83.	0.8	38
56	Impact of Future Climate Change on Regional Crop Water Requirement—A Case Study of Hetao Irrigation District, China. Water (Switzerland), 2017, 9, 429.	2.7	37
57	Target areas for harmonizing the Grain for Green Programme in China's Loess Plateau. Land Degradation and Development, 2020, 31, 325-333.	3.9	37
58	The Effects of Longâ€ŧerm Fertiliser Applications on Soil Organic Carbon and Hydraulic Properties of a Loess Soil in China. Land Degradation and Development, 2016, 27, 60-67.	3.9	36
59	Effects of varied water regimes on root development and its relations with soil water under wheat/maize intercropping system. Plant and Soil, 2019, 439, 113-130.	3.7	36
60	Coupling evapotranspiration partitioning with water migration to identify the water consumption characteristics of wheat and maize in an intercropping system. Agricultural and Forest Meteorology, 2020, 290, 108034.	4.8	34
61	A quantitative review of water footprint accounting and simulation for crop production based on publications during 2002–2018. Ecological Indicators, 2021, 120, 106962.	6.3	34
62	Simulation of soil water movement under subsurface irrigation with porous ceramic emitter. Agricultural Water Management, 2017, 192, 244-256.	5.6	33
63	Sensitivity of crop water productivity to the variation of agricultural and climatic factors: A study of Hetao irrigation district, China. Journal of Cleaner Production, 2017, 142, 2562-2569.	9.3	33
64	Yield, yield attributes and photosynthetic physiological characteristics of dryland wheat (Triticum) Tj ETQq0 0 0 r	gBT /Overl	ock 10 Tf 50
65	Spatiotemporal analysis of climate variability (1971–2010) in spring and summer on the Loess Plateau, China. Hydrological Processes, 2014, 28, 1689-1702.	2.6	32
66	Runoff features of pasture and crop slopes at different rainfall intensities, antecedent moisture contents and gradients on the Chinese Loess Plateau: A solution of rainfall simulation experiments. Catena, 2014, 119, 90-96.	5.0	31
67	A framework of indicator system for zoning of agricultural water and land resources utilization: A case study of Bayan Nur, Inner Mongolia. Ecological Indicators, 2014, 40, 43-50.	6.3	31
68	Dynamics of runoff and sediment trapping performance of vegetative filter strips: Run-on experiments and modeling. Science of the Total Environment, 2017, 593-594, 54-64.	8.0	31
69	Analysis of kinetic energy distribution of big gun sprinkler applied to continuous moving hose-drawn traveler. Agricultural Water Management, 2018, 201, 118-132.	5.6	30

70	Efficiency and sustainability of inter-provincial crop-related virtual water transfers in China. Advances in Water Resources, 2020, 138, 103560.	3.8	29
71	Water productivity evaluation for grain crops in irrigated regions of China. Ecological Indicators, 2015, 55, 107-117.	6.3	28

New problems of food security in Northwest China: A sustainability perspective. Land Degradation and Development, 2020, 31, 975-989. 72 3.9 28

#	Article	IF	CITATIONS
73	The economic–environmental trade-off of growing apple trees in the drylands of China: A conceptual framework for sustainable intensification. Journal of Cleaner Production, 2021, 296, 126497.	9.3	28
74	Effects of permanent ground cover on soil moisture in jujube orchards under sloping ground: A simulation study. Agricultural Water Management, 2014, 138, 68-77.	5.6	27
75	Effects of vegetation cover of natural grassland on runoff and sediment yield in loess hilly region of China. Journal of the Science of Food and Agriculture, 2014, 94, 497-503.	3.5	26
76	Impacts of changing cropping pattern on virtual water flows related to crops transfer: a case study for the Hetao irrigation district, China. Journal of the Science of Food and Agriculture, 2014, 94, 2992-3000.	3.5	26
77	Water use and crop coefficient of the wheat–maize strip intercropping system for an arid region in northwestern China. Agricultural Water Management, 2015, 161, 77-85.	5.6	26
78	Effect of pulsating pressure on labyrinth emitter clogging. Irrigation Science, 2017, 35, 267-274.	2.8	26
79	Prediction of flow characteristics and risk assessment of deep percolation by ceramic emitters in loam. Journal of Hydrology, 2018, 566, 901-909.	5.4	26
80	Monthly blue water footprint caps in a river basin to achieve sustainable water consumption: The role of reservoirs. Science of the Total Environment, 2019, 650, 891-899.	8.0	26
81	Subsurface irrigation with ceramic emitters: An effective method to improve apple yield and irrigation water use efficiency in the semiarid Loess Plateau. Agriculture, Ecosystems and Environment, 2021, 313, 107404.	5.3	26
82	A drought hazard assessment index based on the VIC–PDSI model and its application on the Loess Plateau, China. Theoretical and Applied Climatology, 2013, 114, 125-138.	2.8	25
83	Dry/wet climate zoning and delimitation of arid areas of Northwest China based on a data-driven fashion. Journal of Arid Land, 2014, 6, 287-299.	2.3	25
84	Simulation Study of the Impact of Permanent Groundcover on Soil and Water Changes in Jujube Orchards on Sloping Ground. Land Degradation and Development, 2016, 27, 946-954.	3.9	25
85	Drivers of domestic grain virtual water flow: A study for China. Agricultural Water Management, 2020, 239, 106175.	5.6	25
86	Spatiotemporal variations and developments of water footprints of pig feeding and pork production in China (2004–2013). Agriculture, Ecosystems and Environment, 2020, 297, 106932.	5.3	24
87	Evaluating drivers and flow patterns of inter-provincial grain virtual water trade in China. Science of the Total Environment, 2020, 732, 139251.	8.0	24
88	Catchment-scale variability of absolute versus temporal anomaly soil moisture: Time-invariant part not always plays the leading role. Journal of Hydrology, 2015, 529, 1669-1678.	5.4	23
89	Integrating a mini catchment with mulching for soil water management in a sloping jujube orchard on the semiarid Loess Plateau of China. Solid Earth, 2016, 7, 167-175.	2.8	23
90	Simulation of the virtual water flow pattern associated with interprovincial grain trade and its impact on water resources stress in China. Journal of Cleaner Production, 2021, 288, 125670.	9.3	23

#	Article	IF	CITATIONS
91	Inter-county virtual water flows of the Hetao irrigation district, China: A new perspective for water scarcity. Journal of Arid Environments, 2015, 119, 31-40.	2.4	22
92	Meteorological drought over the Chinese Loess Plateau: 1971–2010. Natural Hazards, 2013, 67, 951-961.	3.4	21
93	GANN models for reference evapotranspiration estimation developed with weather data from different climatic regions. Theoretical and Applied Climatology, 2014, 116, 481-489.	2.8	21
94	Comparisons of spray characteristics between vertical impact and turbine drive sprinklers—A case study of the 50PYC and HY50 big gun-type sprinklers. Agricultural Water Management, 2020, 228, 105847.	5.6	21
95	Recovery growth and water use of intercropped maize following wheat harvest in wheat/maize relay strip intercropping. Field Crops Research, 2020, 256, 107924.	5.1	21
96	Impact of conservation practices on soil hydrothermal properties and crop water use efficiency in a dry agricultural region of the tibetan plateau. Soil and Tillage Research, 2020, 200, 104619.	5.6	20
97	Waterâ€Saving Crop Planning Using Multiple Objective Chaos Particle Swarm Optimization for Sustainable Agricultural and Soil Resources Development. Clean - Soil, Air, Water, 2012, 40, 1376-1384.	1.1	19
98	Effect of the fodder species canola (Brassica napus L.) and daylily (Hemerocallis fulva L.) on soil physical properties and soil water content in a rainfed orchard on the semiarid Loess Plateau, China. Plant and Soil, 2020, 453, 209-228.	3.7	19
99	Rainwater collection and infiltration (RWCI) systems promote deep soil water and organic carbon restoration in water-limited sloping orchards. Agricultural Water Management, 2020, 242, 106400.	5.6	19
100	Simulation of soil water dynamics for uncropped ridges and furrows under irrigation conditions. Canadian Journal of Soil Science, 2013, 93, 85-98.	1.2	18
101	Remote monitoring system for agricultural information based on wireless sensor network. Journal of the Chinese Institute of Engineers, Transactions of the Chinese Institute of Engineers,Series A/Chung-kuo Kung Ch'eng Hsuch K'an, 2017, 40, 75-81.	1.1	18
102	The tradeoff between soil erosion protection and water consumption in revegetation: Evaluation of new indicators and influencing factors. Geoderma, 2019, 347, 32-39.	5.1	18
103	Evaluation and modelling of furrow infiltration for uncropped ridge - furrow tillage in Loess Plateau soils. Soil Research, 2012, 50, 360.	1.1	17
104	Properties of porous alumina ceramics prepared by technique combining cold-drying and sintering. International Journal of Refractory Metals and Hard Materials, 2013, 41, 437-441.	3.8	17
105	The effect of the crystallization of oxidation-derived SiO2 on the properties of porous Si3N4–SiO2 ceramics synthesized by oxidation. Ceramics International, 2014, 40, 4897-4902.	4.8	17
106	Effects of soil managements on surface runoff and soil water content in jujube orchard under simulated rainfalls. Catena, 2015, 135, 193-201.	5.0	17
107	Ceramic patch type subsurface drip irrigation line: Construction and hydraulic properties. Biosystems Engineering, 2019, 182, 29-37.	4.3	17
108	Effect of Soil Texture on Water Movement of Porous Ceramic Emitters: A Simulation Study. Water (Switzerland), 2019, 11, 22.	2.7	17

#	Article	IF	CITATIONS
109	Hydraulic performance and parameter optimisation of a microporous ceramic emitter using computational fluid dynamics, artificial neural network and multi-objective genetic algorithm. Biosystems Engineering, 2020, 189, 11-23.	4.3	17
110	Statistical analyses and controls of root-zone soil moisture in a large gully of the Loess Plateau. Environmental Earth Sciences, 2014, 71, 4801-4809.	2.7	16
111	Fabrication and properties of porous Si3N4–SiO2 ceramics with dense surface and gradient pore distribution. Ceramics International, 2014, 40, 5079-5084.	4.8	16
112	Alleviating Pressure on Water Resources: A new approach could be attempted. Scientific Reports, 2015, 5, 14006.	3.3	16
113	Application of Updated Sage–Husa Adaptive Kalman Filter in the Navigation of a Translational Sprinkler Irrigation Machine. Water (Switzerland), 2019, 11, 1269.	2.7	16
114	Effect of foaming pressure on the properties of porous Si3N4 ceramic fabricated by a technique combining foaming and pressureless sintering. Scripta Materialia, 2013, 68, 877-880.	5.2	15
115	Survey on Water-saving Agricultural Internet of Things based on Wireless Sensor Nerwork. International Journal of Control and Automation, 2015, 8, 229-240.	0.3	15
116	Effect of plant cover type on soil water budget and tree photosynthesis in jujube orchards. Agricultural Water Management, 2017, 184, 135-144.	5.6	15
117	Testing of observation operators designed to estimate profile soil moisture from surface measurements. Hydrological Processes, 2019, 33, 575-584.	2.6	15
118	Estimating soil moisture in gullies from adjacent upland measurements through different observation operators. Journal of Hydrology, 2013, 486, 420-429.	5.4	14
119	An effective method for improving the permeation flux of a ceramic membrane: Single-matrix spherical ceramic membrane. Journal of Hazardous Materials, 2020, 400, 123183.	12.4	14
120	Comparison of classification methods for the divisions of wet/dry climate regions in Northwest China. International Journal of Climatology, 2014, 34, 2163-2174.	3.5	13
121	Water Footprint Symposium: where next for water footprint and water assessment methodology?. International Journal of Life Cycle Assessment, 2014, 19, 1561-1565.	4.7	13
122	Physical versus economic water footprints in crop production: a spatial and temporal analysis for China. Hydrology and Earth System Sciences, 2021, 25, 169-191.	4.9	13
123	Clogging formation and an anti-clogging method in subsurface irrigation system with porous ceramic emitter. Agricultural Water Management, 2021, 250, 106770.	5.6	13
124	Water footprints of irrigated crop production and meteorological driving factors at multiple temporal scales. Agricultural Water Management, 2021, 255, 107014.	5.6	13
125	Comparison between sprinkler irrigation and natural rainfall based on droplet diameter. Spanish Journal of Agricultural Research, 2016, 14, e1201.	0.6	13
126	Hydraulic design procedure for drip irrigation submain unit based on relative flow difference. Irrigation Science, 2013, 31, 1065-1073.	2.8	12

#	Article	IF	CITATIONS
127	Spatial and temporal trends in climatic variables in arid areas of northwest China. International Journal of Climatology, 2016, 36, 4118-4129.	3.5	12
128	Application Rate Influences the Soil and Water Conservation Effectiveness of Mulching with Chipped Branches. Soil Science Society of America Journal, 2018, 82, 447-454.	2.2	12
129	Effectiveness of a subsurface irrigation system with ceramic emitters under low-pressure conditions. Agricultural Water Management, 2021, 243, 106390.	5.6	12
130	Evaluation of Grain Yield and Three Physiological Traits in 30 Spring Wheat Genotypes across Three Irrigation Regimes. Crop Science, 2012, 52, 110-121.	1.8	11
131	Changes in key driving forces of soil erosion in the Middle Yellow River Basin: vegetation and climate. Natural Hazards, 2014, 70, 957-968.	3.4	11
132	Land Use Affects Soil Moisture Response to Dramatic Shortâ€ŧerm Rainfall Events in a Hillslope Catchment of the Chinese Loess Plateau. Agronomy Journal, 2019, 111, 1506-1515.	1.8	11
133	Water Footprint Study Review for Understanding and Resolving Water Issues in China. Water (Switzerland), 2020, 12, 2988.	2.7	11
134	Environmental impact of grain virtual water flows in China: From 1997 to 2014. Agricultural Water Management, 2021, 256, 107127.	5.6	11
135	Quantitative evaluation of spatial scale effects on regional water footprint in crop production. Resources, Conservation and Recycling, 2021, 173, 105709.	10.8	11
136	Application of neural network and grey relational analysis in ranking the factors affecting runoff and sediment yield under simulated rainfall. Soil Research, 2016, 54, 291.	1.1	10
137	Impacts of future climate and agricultural landâ€use changes on regional agricultural water use in a large irrigation district of northwest China. Land Degradation and Development, 2019, 30, 1158-1171.	3.9	10
138	Evaluating grain virtual water flow in China: Patterns and drivers from a socio-hydrology perspective. Journal of Hydrology, 2022, 606, 127412.	5.4	10
139	Study on Permeability Stability of Sand-Based Microporous Ceramic Filter Membrane. Materials, 2019, 12, 2161.	2.9	9
140	Water Footprints, Intraâ€National Virtual Water Flows, and Associated Sustainability Related to Pork Production and Consumption: A Case for China. Water Resources Research, 2022, 58, .	4.2	9
141	Mulching Measures Improve Soil Moisture in Rain-Fed Jujube (Ziziphus jujuba Mill.) Orchards in the Loess Hilly Region of China. Sustainability, 2021, 13, 610.	3.2	8
142	Vegetative filter strips—Effect of vegetation type and shape of strip on runâ€off and sediment trapping. Land Degradation and Development, 2018, 29, 3917-3927.	3.9	7
143	The Cognitive Framework of the Interaction between the Physical and Virtual Water and the Strategies for Sustainable Coupling Management. Sustainability, 2019, 11, 2567.	3.2	7
144	Evaluation of the water consumption of animal products and the virtual water flow pattern associated with interprovincial trade in China. Journal of Cleaner Production, 2021, , 129599.	9.3	6

#	Article	IF	CITATIONS
145	Land use affects the response of soil moisture and soil temperature to environmental factors in the loess hilly region of China. PeerJ, 0, 10, e13736.	2.0	6
146	Assessment of the Effects of Climate Change on Evapotranspiration with an Improved Elasticity Method in a Nonhumid Area. Sustainability, 2018, 10, 4589.	3.2	5
147	Estimation of Actual Evapotranspiration in a Semiarid Region Based on GRACE Gravity Satellite Data—A Case Study in Loess Plateau. Remote Sensing, 2018, 10, 2032.	4.0	5
148	Comparison of the root–soil water relationship of two typical revegetation species along a precipitation gradient on the Loess Plateau. Environmental Research Letters, 2021, 16, 064054.	5.2	5
149	Effects of atmospheric ammonia enrichment and nitrogen status on the growth of maize. Soil Science and Plant Nutrition, 2012, 58, 32-40.	1.9	4
150	Vertical variation in shallow and deep soil moisture in an apple orchard in the loess hilly–gully area of north China. Soil Use and Management, 2021, 37, 595-606.	4.9	4
151	Impacts of Interspecific Interactions on Crop Growth and Yield in Wheat (Triticum aestivum L.)/Maize (Zea mays L.) Strip Intercropping under Different Water and Nitrogen Levels. Agronomy, 2022, 12, 951.	3.0	4
152	Evaluation of Soil Water Availability (SWA) Based on Hydrological Modelling in Arid and Semi-Arid Areas: A Case Study in Handan City, China. Water (Switzerland), 2016, 8, 360.	2.7	3
153	A global drought dataset of standardized moisture anomaly index incorporating snow dynamics (SZI _{snow}) and its application in identifying large-scale drought events. Earth System Science Data, 2022, 14, 2259-2278.	9.9	3
154	Effects of Elevated Ammonia Concentration and Nitrogen Status on the Growth and Yield of Winter Wheat. Agronomy Journal, 2010, 102, 1194-1200.	1.8	2
155	Projection Pursuit Evaluation Model: Optimizing Scheme of Crop Planning for Agricultural Sustainable Development and Soil Resources Utilization. Clean - Soil, Air, Water, 2012, 40, 592-598.	1.1	2
156	Sloping Land Use Affects Soil Moisture and Temperature in the Loess Hilly Region of China. Agronomy, 2020, 10, 774.	3.0	2
157	Development of a new wireless sensor network communication. Journal of Computers, 2013, 8, .	0.4	2
158	Spatiotemporal heterogeneities in water and land appropriations related to food losses and waste in China. Environmental Research Letters, 2022, 17, 054020.	5.2	2
159	Sloping land use affects the complexity of soil moisture and temperature changes in the loess hilly region of China. PLoS ONE, 2022, 17, e0262445.	2.5	1
160	A Support System for Crop Water Requirement Diagnosis and Irrigation Decision Making. Information Technology Journal, 2013, 12, 1555-1562.	0.3	0