Tami Bond

List of Publications by Citations

Source: https://exaly.com/author-pdf/463714/tami-bond-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

22,518 117 52 111 h-index g-index citations papers 6.65 6.9 25,108 117 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
111	Bounding the role of black carbon in the climate system: A scientific assessment. <i>Journal of Geophysical Research D: Atmospheres</i> , 2013 , 118, 5380-5552	4.4	3330
110	Light Absorption by Carbonaceous Particles: An Investigative Review. <i>Aerosol Science and Technology</i> , 2006 , 40, 27-67	3.4	1871
109	Historical (1850\(\textit{0}\)000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 7017-7039	6.8	1724
108	A technology-based global inventory of black and organic carbon emissions from combustion. Journal of Geophysical Research, 2004 , 109,		1653
107	An inventory of gaseous and primary aerosol emissions in Asia in the year 2000. <i>Journal of Geophysical Research</i> , 2003 , 108,		1594
106	Calibration and Intercomparison of Filter-Based Measurements of Visible Light Absorption by Aerosols. <i>Aerosol Science and Technology</i> , 1999 , 30, 582-600	3.4	783
105	Emissions of primary aerosol and precursor gases in the years 2000 and 1750 prescribed data-sets for AeroCom. <i>Atmospheric Chemistry and Physics</i> , 2006 , 6, 4321-4344	6.8	765
104	Evolution of anthropogenic and biomass burning emissions of air pollutants at global and regional scales during the 1980\(\textbf{Q}\) 010 period. <i>Climatic Change</i> , 2011 , 109, 163-190	4.5	623
103	Historical emissions of black and organic carbon aerosol from energy-related combustion, 1850 2 000. <i>Global Biogeochemical Cycles</i> , 2007 , 21, n/a-n/a	5.9	601
102	Historical (1750 2 014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS). <i>Geoscientific Model Development</i> , 2018 , 11, 369-408	6.3	585
101	Evaluation of black carbon estimations in global aerosol models. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 9001-9026	6.8	510
100	Global distribution of atmospheric phosphorus sources, concentrations and deposition rates, and anthropogenic impacts. <i>Global Biogeochemical Cycles</i> , 2008 , 22, n/a-n/a	5.9	504
99	Light absorption by organic carbon from wood combustion. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 1773-1787	6.8	495
98	Limitations in the enhancement of visible light absorption due to mixing state. <i>Journal of Geophysical Research</i> , 2006 , 111,		470
97	Spectral absorption properties of atmospheric aerosols. <i>Atmospheric Chemistry and Physics</i> , 2007 , 7, 59	93 8. 894	13441
96	Black carbon emissions in China. Atmospheric Environment, 2001, 35, 4281-4296	5.3	438
95	Critical assessment of the current state of scientific knowledge, terminology, and research needs concerning the role of organic aerosols in the atmosphere, climate, and global change. <i>Atmospheric Chemistry and Physics</i> , 2006 , 6, 2017-2038	6.8	394

(2006-2011)

94	All-time releases of mercury to the atmosphere from human activities. <i>Environmental Science & Environmental Science & Technology</i> , 2011 , 45, 10485-91	10.3	342
93	Spectral dependence of visible light absorption by carbonaceous particles emitted from coal combustion. <i>Geophysical Research Letters</i> , 2001 , 28, 4075-4078	4.9	250
92	Color of brown carbon: A model for ultraviolet and visible light absorption by organic carbon aerosol. <i>Geophysical Research Letters</i> , 2007 , 34,	4.9	246
91	Laboratory and field investigations of particulate and carbon monoxide emissions from traditional and improved cookstoves. <i>Atmospheric Environment</i> , 2009 , 43, 1170-1181	5.3	240
90	Can reducing black carbon emissions counteract global warming?. <i>Environmental Science & Environmental Science & Technology</i> , 2005 , 39, 5921-6	10.3	235
89	Emission factors and real-time optical properties of particles emitted from traditional wood burning cookstoves. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	232
88	Combustion iron distribution and deposition. Global Biogeochemical Cycles, 2008, 22, n/a-n/a	5.9	225
87	Global impacts of aerosols from particular source regions and sectors. <i>Journal of Geophysical Research</i> , 2007 , 112,		191
86	Attribution of climate forcing to economic sectors. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 3382-7	11.5	186
85	Analysis of Multi-angle Imaging SpectroRadiometer (MISR) aerosol optical depths over greater India during winter 2001 2 004. <i>Geophysical Research Letters</i> , 2004 , 31,	4.9	170
84	On the future of carbonaceous aerosol emissions. <i>Journal of Geophysical Research</i> , 2004 , 109,		165
83	Export efficiency of black carbon aerosol in continental outflow: Global implications. <i>Journal of Geophysical Research</i> , 2005 , 110,		154
82	A global modeling study on carbonaceous aerosol microphysical characteristics and radiative effects. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 7439-7456	6.8	125
81	How much can the vertical distribution of black carbon affect its global direct radiative forcing?. <i>Geophysical Research Letters</i> , 2010 , 37, n/a-n/a	4.9	124
80	Asian aerosols: current and year 2030 distributions and implications to human health and regional climate change. <i>Environmental Science & Environmental Science & Environment</i>	10.3	124
79	Light absorption properties and radiative effects of primary organic aerosol emissions. <i>Environmental Science & Environmental Science & amp; Technology</i> , 2015 , 49, 4868-77	10.3	119
78	Household light makes global heat: high black carbon emissions from kerosene wick lamps. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	118
77	Aerosol direct radiative effects over the northwest Atlantic, northwest Pacific, and North Indian Oceans: estimates based on in-situ chemical and optical measurements and chemical transport modeling. Atmospheric Chemistry and Physics. 2006, 6, 1657-1732	6.8	115

76	A laboratory comparison of the global warming impact of five major types of biomass cooking stoves. <i>Energy for Sustainable Development</i> , 2008 , 12, 56-65	5.4	110
75	Yellow Beads and Missing Particles: Trouble Ahead for Filter-Based Absorption Measurements. <i>Aerosol Science and Technology</i> , 2007 , 41, 630-637	3.4	108
74	Quantifying immediate radiative forcing by black carbon and organic matter with the Specific Forcing Pulse. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 1505-1525	6.8	106
73	Primary particle emissions from residential coal burning: Optical properties and size distributions. <i>Journal of Geophysical Research</i> , 2002 , 107, ICC 9-1-ICC 9-14		100
72	Gas/particle partitioning and global distribution of polycyclic aromatic hydrocarbonsa modelling approach. <i>Chemosphere</i> , 2009 , 76, 98-106	8.4	98
71	Compositional characterization of PM2.5 emitted from in-use diesel vehicles. <i>Atmospheric Environment</i> , 2010 , 44, 15-22	5.3	95
70	Global atmospheric impacts of residential fuels. Energy for Sustainable Development, 2004, 8, 20-32	5.4	91
69	Global biofuel use, 1850🛘 000. <i>Global Biogeochemical Cycles</i> , 2007 , 21, n/a-n/a	5.9	89
68	Global emission projections of particulate matter (PM): I. Exhaust emissions from on-road vehicles. <i>Atmospheric Environment</i> , 2011 , 45, 4830-4844	5.3	76
67	Chemical, microphysical and optical properties of primary particles from the combustion of biomass fuels. <i>Environmental Science & Environmental Scien</i>	10.3	76
66	Black carbon absorption at the global scale is affected by particle-scale diversity in composition. <i>Nature Communications</i> , 2016 , 7, 12361	17.4	74
65	Emissions from South Asian brick production. <i>Environmental Science & Emissions from South Asian brick production</i> .	83 0.3	59
64	Assessment of air pollutant emissions from brick kilns. <i>Atmospheric Environment</i> , 2014 , 98, 549-553	5.3	58
63	Two hundred fifty years of aerosols and climate: the end of the age of aerosols. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 537-549	6.8	57
62	Can warming particles enter global climate discussions?. Environmental Research Letters, 2007, 2, 04503	306.2	55
61	Light Absorption by Primary Particle Emissions from a Lignite Burning Plant. <i>Environmental Science</i> & amp; Technology, 1999 , 33, 3887-3891	10.3	54
60	Characterizing biofuel combustion with patterns of real-time emission data (PaRTED). <i>Environmental Science & Environmental Sc</i>	10.3	53
59	Measuring Organic Carbon and Black Carbon in Rainwater: Evaluation of Methods. <i>Aerosol Science and Technology</i> , 2014 , 48, 239-250	3.4	52

58	Climate-relevant properties of diesel particulate emissions: results from a piggyback study in Bangkok, Thailand. <i>Environmental Science & Environmental Science & Environment</i>	10.3	50
57	Truncation and Angular-Scattering Corrections for Absorbing Aerosol in the TSI 3563 Nephelometer. <i>Aerosol Science and Technology</i> , 2009 , 43, 866-871	3.4	47
56	Quantifying the emission of light-absorbing particles: Measurements tailored to climate studies. <i>Geophysical Research Letters</i> , 1998 , 25, 337-340	4.9	41
55	Black Carbon Emissions from Associated Natural Gas Flaring. <i>Environmental Science & Emp; Technology</i> , 2016 , 50, 2075-81	10.3	40
54	Explaining variance in black carbon@aging timescale. Atmospheric Chemistry and Physics, 2015, 15, 3173	- 3. 891	38
53	Global emission projections for the transportation sector using dynamic technology modeling. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 5709-5733	6.8	37
52	Revisiting Thermal-Optical Analyses of Carbonaceous Aerosol Using a Physical Model. <i>Aerosol Science and Technology</i> , 2008 , 42, 930-948	3.4	37
51	Laboratory-Measured Optical Properties of Inorganic and Organic Aerosols at Relative Humidities up to 95%. <i>Aerosol Science and Technology</i> , 2012 , 46, 178-190	3.4	36
50	Toward Reduced Representation of Mixing State for Simulating Aerosol Effects on Climate. <i>Bulletin of the American Meteorological Society</i> , 2017 , 98, 971-980	6.1	34
49	Impact of Changes to the Atmospheric Soluble Iron Deposition Flux on Ocean Biogeochemical Cycles in the Anthropocene. <i>Global Biogeochemical Cycles</i> , 2020 , 34, e2019GB006448	5.9	33
48	Linking future aerosol radiative forcing to shifts in source activities. <i>Geophysical Research Letters</i> , 2007 , 34,	4.9	33
47	Emissions from residential combustion considering end-uses and spatial constraints: Part II, emission reduction scenarios. <i>Atmospheric Environment</i> , 2016 , 124, 1-11	5.3	32
46	Climate-relevant properties of primary particulate emissions from oil and natural gas combustion. <i>Atmospheric Environment</i> , 2006 , 40, 3574-3587	5.3	31
45	Emission Measurements from Traditional Biomass Cookstoves in South Asia and Tibet. <i>Environmental Science & Environmental Scie</i>	10.3	29
44	Climate-Relevant Particulate Emission Characteristics of a Coal Fired Heating Plant. <i>Environmental Science & Environmental Sc</i>	10.3	26
43	Black carbon emissions in Russia: A critical review. <i>Atmospheric Environment</i> , 2017 , 163, 9-21	5.3	25
42	Field Emission Measurements of Solid Fuel Stoves in Yunnan, China Demonstrate Dominant Causes of Uncertainty in Household Emission Inventories. <i>Environmental Science & Environmental Science & Envir</i>	10.3	24
41	Historical (1850\(\textit{0}\)000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application		24

40	Global emission projections of particulate matter (PM): II. Uncertainty analyses of on-road vehicle exhaust emissions. <i>Atmospheric Environment</i> , 2014 , 87, 189-199	5.3	22
39	Health and climate impacts of future United States land freight modelled with global-to-urban models. <i>Nature Sustainability</i> , 2019 , 2, 105-112	22.1	21
38	Light absorption of organic aerosol from pyrolysis of corn stalk. <i>Atmospheric Environment</i> , 2016 , 144, 249-256	5.3	21
37	Impacts of household sources on air pollution at village and regional scales in India. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 7719-7742	6.8	18
36	Emission Projections for Long-Haul Freight Trucks and Rail in the United States through 2050. <i>Environmental Science & Environmental Science & Environ</i>	10.3	18
35	Carbonaceous aerosols in the industrial era. <i>Eos</i> , 2004 , 85, 241	1.5	18
34	Seasonal fuel consumption, stoves, and end-uses in rural households of the far-western development region of Nepal. <i>Environmental Research Letters</i> , 2017 , 12, 125011	6.2	17
33	Large reductions in urban black carbon concentrations in the United States between 1965 and 2000. <i>Atmospheric Environment</i> , 2017 , 151, 17-23	5.3	16
32	Emissions from residential combustion considering end-uses and spatial constraints: Part I, methods and spatial distribution. <i>Atmospheric Environment</i> , 2016 , 125, 126-139	5.3	16
31	Corrigendum to "Evaluation of black carbon estimations in global aerosol models" published in Atmos. Chem. Phys., 9, 9001-9026, 2009. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 79-8	1 ^{6.8}	16
30	Historical (1750🛮014) anthropogenic emissions of reactive gases and aerosols from the Community Emission Data System (CEDS) 2017 ,		15
29	When is cloud condensation nuclei activity sensitive to particle characteristics at emission?. <i>Journal of Geophysical Research D: Atmospheres</i> , 2013 , 118, 13,476-13,488	4.4	14
28	Light absorption by organic carbon from wood combustion 2009,		12
27	Quantifying Proximity, Confinement, and Interventions in Disease Outbreaks: A Decision Support Framework for Air-Transported Pathogens. <i>Environmental Science & Environmental Science & Environmental</i>	9 8 0.3	12
26	A Mineralogy-Based Anthropogenic Combustion-Iron Emission Inventory. <i>Journal of Geophysical Research D: Atmospheres</i> , 2020 , 125, e2019JD032114	4.4	11
25	Modeling emission rates and exposures from outdoor cooking. <i>Atmospheric Environment</i> , 2017 , 164, 50-60	5.3	10
24	Recent (1980 to 2015) Trends and Variability in Daily-to-Interannual Soluble Iron Deposition from Dust, Fire, and Anthropogenic Sources. <i>Geophysical Research Letters</i> , 2020 , 47, e2020GL089688	4.9	10
23	Simulating aerosol chamber experiments with the particle-resolved aerosol model PartMC. <i>Aerosol Science and Technology</i> , 2017 , 51, 856-867	3.4	9

Spectral absorption properties of atmospheric aerosols 2.2 9 Effectiveness of mitigation measures in reducing future primary particulate matter emissions from 8 21 10.3 on-road vehicle exhaust. Environmental Science & Technology, 2014, 48, 14455-63 Earth, Wind, Fire, and Pollution: Aerosol Nutrient Sources and Impacts on Ocean Biogeochemistry. 20 15.4 7 Annual Review of Marine Science, 2021, A complete transition to clean household energy can save onequarter of the healthy life lost to 6.2 6 19 particulate matter pollution exposure in India. Environmental Research Letters, 2020, 15, 094096 Two hundred fifty years of aerosols and climate: the end of the age of aerosols 18 5 Evaluation of black carbon estimations in global aerosol models 17 5 Constraining a Historical Black Carbon Emission Inventory of the United States for 1960\(\textbf{Q} 000. 16 4 4.4 Journal of Geophysical Research D: Atmospheres, 2019, 124, 4004-4025 Plume-exit modeling to determine cloud condensation nuclei activity of aerosols from residential 6.8 biofuel combustion. Atmospheric Chemistry and Physics, 2017, 17, 9399-9415 Quantifying immediate radiative forcing by black carbon and organic matter with the Specific 14 4 Forcing Pulse Prediction of organic aerosol precursor emission from the pyrolysis of thermally thick wood. Fuel, 7.1 13 2020, 269, 117333 Investigating the Linear Dependence of Direct and Indirect Radiative Forcing on Emission of Carbonaceous Aerosols in a Global Climate Model. Journal of Geophysical Research D: Atmospheres, 12 3 4.4 2018, 123, 1657-1672 A global modeling study on carbonaceous aerosol microphysical characteristics and radiative forcing 11 Personal exposure to PM of indoor and outdoor origin in two neighboring Chinese communities 10 10.2 3 with contrasting household fuel use patterns. Science of the Total Environment, 2021, 800, 149421 Catalytic Combustion of Natural Gas Over Supported Platinum: Flow Reactor Experiments and 9 2 Detailed Numerical Modeling 1996, Emissions Measurements from Household Solid Fuel Use in Haryana, India: Implications for Climate 8 10.3 2 and Health Co-benefits. Environmental Science & Depth Technology, 2021, 55, 3201-3209 Impacts of Household Sources on Air Pollution at Village and Regional Scales in India 2018, Quantifying proximity, confinement, and interventions in disease outbreaks: a decision support 6 1 framework for air-transported pathogens Global emission projections for the transportation sector using dynamic technology modeling

4	Technical note: Pyrolysis principles explain time-resolved organic aerosol release from biomass burning. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 15605-15618	6.8 o	
3	A conceptual framework for evaluating cooking systems. Environmental Research Letters,	6.2	
2	Effect of discrepancies caused by model resolution on model-measurement comparison for surface black carbon. <i>Atmospheric Environment</i> , 2021 , 247, 118178	5.3	
1	Future PM2.5 emissions from metal production to meet renewable energy demand. <i>Environmental Research Letters</i> , 2022 , 17, 044043	6.2	

TAMI BOND