Runsheng Gao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4637094/publications.pdf

Version: 2024-02-01

933447 940533 16 585 10 16 citations h-index g-index papers 16 16 16 851 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Tin-cobalt bimetals in 2D leaf-like MOF-derived carbon for advanced lithium storage applications. Electrochimica Acta, 2022, 410, 140036.	5.2	5
2	Biomineralization-inspired: rapid preparation of a silicon-based composite as a high-performance lithium-ion battery anode. Journal of Materials Chemistry A, 2021, 9, 11614-11622.	10.3	10
3	Fabrication of graphene/MoS2 alternately stacked structure for enhanced lithium storage. Materials Chemistry and Physics, 2020, 239, 121987.	4.0	11
4	A highly stable SiOx-based anode enabled by self-assembly with polyelectrolyte. Electrochimica Acta, 2020, 360, 136958.	5. 2	6
5	A sandwich-like silicon–carbon composite prepared by surface-polymerization for rapid lithium-ion storage. Nano Energy, 2020, 78, 105341.	16.0	54
6	A green strategy for the preparation of a honeycomb-like silicon composite with enhanced lithium storage properties. Nanoscale, 2020, 12, 12849-12855.	5 . 6	7
7	Layered Siliconâ€Based Nanosheets as Electrode for 4 V Highâ€Performance Supercapacitor. Advanced Functional Materials, 2020, 30, 2002200.	14.9	42
8	In situ synthesis of MOF-derived carbon shells for silicon anode with improved lithium-ion storage. Nano Energy, 2020, 70, 104444.	16.0	99
9	Preparation of layered Si materials as anode for lithium-ion batteries. Chemical Physics Letters, 2019, 730, 198-205.	2.6	18
10	Polyacrylonitrile mesoporous composite membranes with high separation efficiency prepared by fast freeze-extraction process. Journal of Industrial and Engineering Chemistry, 2017, 49, 61-68.	5 . 8	2
11	Highly efficient polymer–MOF nanocomposite membrane for pervaporation separation of water/methanol/MTBE ternary mixture. Chemical Engineering Research and Design, 2017, 117, 688-697.	5.6	26
12	Novel amorphous nickel sulfide@CoS double-shelled polyhedral nanocages for supercapacitor electrode materials with superior electrochemical properties. Electrochimica Acta, 2017, 237, 94-101.	5.2	114
13	Metal in situ surface functionalization of polymer-grafted-carbon nanotube composite membranes for fast efficient nanofiltration. Journal of Materials Chemistry A, 2017, 5, 583-592.	10.3	51
14	Cellulose nanofiber intermediary to fabricate highly-permeable ultrathin nanofiltration membranes for fast water purification. Journal of Membrane Science, 2017, 524, 174-185.	8.2	113
15	Nickel hydroxide nanosheet membranes with fast water and organics transport for molecular separation. Nanoscale, 2016, 8, 18428-18435.	5 . 6	26
16	A Versatile Approach Towards the Fast Fabrication of Highly-Permeable Polymer Mesoporous Membranes. ChemistrySelect, 2016, 1, 3049-3053.	1.5	1