Lucas Lombriser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4637054/publications.pdf

Version: 2024-02-01

218677 206112 2,630 50 26 48 citations h-index g-index papers 50 50 50 2617 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Effect of screening mechanisms on black hole binary inspiral waveforms. Physical Review D, 2022, 105, .	4.7	4
2	Scalar ÄŒerenkov radiation from high-energy cosmic rays. Physical Review D, 2022, 105, .	4.7	0
3	New horizons for fundamental physics with LISA. Living Reviews in Relativity, 2022, 25, .	26.7	82
4	Scalar and tensor gravitational waves. Physical Review D, 2021, 103, .	4.7	19
5	Easing cosmic tensions with an open and hotter universe. Physical Review D, 2021, 103, .	4.7	18
6	Baryogenesis through asymmetric Hawking radiation from primordial black holes as dark matter. Physical Review D, 2021, 103, .	4.7	6
7	On the road to per cent accuracy – V. The non-linear power spectrum beyond Ĵ·CDM with massive neutrinos and baryonic feedback. Monthly Notices of the Royal Astronomical Society, 2021, 508, 2479-2491.	4.4	13
8	Horndeski theories and beyond from higher dimensions. Classical and Quantum Gravity, 2021, 38, 025003.	4.0	9
9	Exploring the self-tuning of the cosmological constant from Planck mass variation. Classical and Quantum Gravity, 2021, 38, 235003.	4.0	3
10	On the road to per cent accuracy IV: ReACT – computing the non-linear power spectrum beyond Ĵ·CDM. Monthly Notices of the Royal Astronomical Society, 2020, 498, 4650-4662.	4.4	27
11	Local self-tuning mechanism for the cosmological constant. Physical Review D, 2020, 102, .	4.7	11
12	Horndeski gravity and standard sirens. Physical Review D, 2020, 102, .	4.7	26
13	N-body simulations for parametrized modified gravity. Monthly Notices of the Royal Astronomical Society, 2020, 497, 1885-1894.	4.4	23
14	Consistency of the local Hubble constant with the cosmic microwave background. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2020, 803, 135303.	4.1	32
15	Dark degeneracy I: Dynamical or interacting dark energy?. Physics of the Dark Universe, 2020, 28, 100490.	4.9	24
16	Parameterised post-Newtonian formalism for the effective field theory of dark energy via screened reconstructed Horndeski theories. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 032-032.	5.4	11
17	Inherently stable effective field theory for dark energy and modified gravity. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 041-041.	5.4	11
18	Screening and degenerate kinetic self-acceleration from the nonlinear freedom of reconstructed Horndeski theories. Physical Review D, 2019, 100, .	4.7	6

#	Article	IF	CITATIONS
19	Testing modified gravity at cosmological distances with LISA standard sirens. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 024-024.	5.4	129
20	On the cosmological constant problem. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2019, 797, 134804.	4.1	60
21	Late-time acceleration by a residual cosmological constant from sequestering vacuum energy in ultimate collapsed structures. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 065-065.	5.4	3
22	Limitations on Standard Sirens tests of gravity from screening. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 013-013.	5.4	23
23	Parametrizations for Tests of Gravity. , 2019, , 35-65.		0
24	Reconstructing Horndeski theories from phenomenological modified gravity and dark energy models on cosmological scales. Physical Review D, 2018, 98, .	4.7	33
25	Parametrizations for tests of gravity. International Journal of Modern Physics D, 2018, 27, 1848002.	2.1	12
26	Challenges to self-acceleration in modified gravity from gravitational waves and large-scale structure. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2017, 765, 382-385.	4.1	224
27	Parameterised post-Newtonian expansion in screened regions. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 031-031.	5.4	14
28	Is there another coincidence problem at the reionization epoch?. Physical Review D, 2017, 96, .	4.7	7
29	Reconstructing Horndeski models from the effective field theory of dark energy. Physical Review D, 2017, 96, .	4.7	22
30	Breaking a dark degeneracy with gravitational waves. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 031-031.	5.4	301
31	Cluster abundance in chameleon <i>f</i> (<i>R</i>) gravity I: toward an accurate halo mass function prediction. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 024-024.	5.4	44
32	Constraints on decaying early modified gravity from cosmological observations. Physical Review D, 2016, 94, .	4.7	14
33	A parametrisation of modified gravity on nonlinear cosmological scales. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 039-039.	5.4	33
34	Finding Horndeski theories with Einstein gravity limits. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 006-006.	5.4	49
35	Dark Energy Versus Modified Gravity. Annual Review of Nuclear and Particle Science, 2016, 66, 95-122.	10.2	291
36	Unscreening Modified Gravity in the Matter Power Spectrum. Physical Review Letters, 2015, 114, 251101.	7.8	34

#	Article	IF	CITATIONS
37	Classifying Linearly Shielded Modified Gravity Models in Effective Field Theory. Physical Review Letters, 2015, 114, 031101.	7.8	30
38	Semi-dynamical perturbations of unified dark energy. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 040-040.	5.4	27
39	Halo model and halo properties in Galileon gravity cosmologies. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 029-029.	5.4	59
40	Halo modelling in chameleon theories. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 021-021.	5.4	59
41	Testing chameleon gravity with the Coma cluster. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 013-013.	5.4	100
42	Constraining chameleon models with cosmology. Annalen Der Physik, 2014, 526, 259-282.	2.4	89
43	Relativistic effects in galaxy clustering in a parametrized post-Friedmann universe. Physical Review D, 2013, 87, .	4.7	49
44	Modeling halo mass functions in chameleon <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>f</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>R</mml:mi><mml:mi> Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 452 Td (stre</mml:mi></mml:math>	etchy="fals	se" ⁷⁵
45	Cluster density profiles as a test of modified gravity. Physical Review D, 2012, 85, .	4.7	100
46	Chameleon <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>f</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>R</mml:mi><mml:mo) (stre<="" 0="" 10="" 372="" 50="" etqq0="" overlock="" rgbt="" td="" tf="" tj=""><td>etcħÿ="fals</td><td>se"⁶⁶</td></mml:mo)></mml:math>	etcħÿ="fals	se" ⁶⁶
47	Constraints on <mml:math display="inline" xmins:mmi="http://www.w3.org/1998/Math/Math/Math/ML"><mml:mi>f</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>R</mml:mi><mml:mo) 0.784314="" 1="" 10="" 337<="" 50="" etqq1="" overlock="" rgbt="" td="" tf="" tj=""><td>⁷ Td.∜stret</td><td>chy⊕ˈfalse">)</td></mml:mo)></mml:math>	⁷ T d.∜ stret	ch y⊕ ˈfalse">)
48	Review D, 2012, 85,. Consistency check of DDMphenomenology. Physical Review D, 2011, 83,.	4.7	24
49	Testing general relativity with current cosmological data. Physical Review D, 2010, 81, .	4.7	149
50	Cosmological constraints on DGP braneworld gravity with brane tension. Physical Review D, 2009, 80,	4.7	79