
Naomi P Visanji

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/463669/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Axial Impairment Following Deep Brain Stimulation in Parkinson's Disease: A Surgicogenomic Approach. Journal of Parkinson's Disease, 2022, 12, 117-128.	1.5	5
2	Combining Skin αâ€5ynuclein <scp>Realâ€Time Quakingâ€Induced Conversion</scp> and Circulating Neurofilament Light Chain to Distinguish Multiple System Atrophy and Parkinson's Disease. Movement Disorders, 2022, 37, 648-650.	2.2	12
3	Alpha-synuclein seeding shows a wide heterogeneity in multiple system atrophy. Translational Neurodegeneration, 2022, 11, 7.	3.6	42
4	Patterns of Mixed Pathologies in Down Syndrome. Journal of Alzheimer's Disease, 2022, 87, 595-607.	1.2	8
5	Protracted course progressive supranuclear palsy. European Journal of Neurology, 2022, 29, 2220-2231.	1.7	8
6	Alpha-Synuclein Targeting Therapeutics for Parkinson's Disease and Related Synucleinopathies. Frontiers in Neurology, 2022, 13, .	1.1	16
7	α-Synuclein molecular behavior and nigral proteomic profiling distinguish subtypes of Lewy body disorders. Acta Neuropathologica, 2022, 144, 167-185.	3.9	12
8	Using artificial intelligence to identify antiâ€hypertensives as possible disease modifying agents in Parkinson's disease. Pharmacoepidemiology and Drug Safety, 2021, 30, 201-209.	0.9	11
9	Call the Plumber: Impaired Meningeal Lymphatic Drainage in Parkinson's Disease. Movement Disorders, 2021, 36, 1125-1125.	2.2	1
10	Genomewide Association Studies of <scp><i>LRRK2</i></scp> Modifiers of Parkinson's Disease. Annals of Neurology, 2021, 90, 76-88.	2.8	30
11	Exposure to Phosphoglycerate Kinase 1 Activators and Incidence of Parkinson's Disease. Movement Disorders, 2021, 36, 2419-2425.	2.2	11
12	Short-term deceleration capacity of heart rate: a sensitive marker of cardiac autonomic dysfunction in idiopathic Parkinson's disease. Clinical Autonomic Research, 2021, 31, 729-736.	1.4	2
13	The Discovery of αâ€6ynuclein in Lewy Pathology of Parkinson's Disease: The Inspiration of a Revolution. Movement Disorders Clinical Practice, 2021, 8, 1189-1193.	0.8	1
14	Small molecule inhibitors of α-synuclein oligomers identified by targeting early dopamine-mediated motor impairment in C. elegans. Molecular Neurodegeneration, 2021, 16, 77.	4.4	13
15	α-Synuclein strains target distinct brain regions and cell types. Nature Neuroscience, 2020, 23, 21-31.	7.1	195
16	Nonsteroidal <scp>Antiâ€inflammatory</scp> Use and <scp><i>LRRK2</i></scp> Parkinson's Disease Penetrance. Movement Disorders, 2020, 35, 1755-1764.	2.2	57
17	Heart rate variability biomarkers of leucine-rich repeat kinase 2-associated Parkinson's disease. , 2020, ,		0
18	Emerging drugs for the treatment of L-DOPA-induced dyskinesia: an update. Expert Opinion on Emerging Drugs, 2020, 25, 131-144.	1.0	11

NAOMI P VISANJI

#	Article	IF	CITATIONS
19	Identifying drugs with diseaseâ€modifying potential in Parkinson's disease using artificial intelligence and pharmacoepidemiology. Pharmacoepidemiology and Drug Safety, 2020, 29, 864-872.	0.9	22
20	Repurposing drugs to treat l-DOPA-induced dyskinesia in Parkinson's disease. Neuropharmacology, 2019, 147, 11-27.	2.0	26
21	Increased markers of cardiac vagal activity in leucine-rich repeat kinase 2-associated Parkinson's disease. Clinical Autonomic Research, 2019, 29, 603-614.	1.4	10
22	Beyond the synucleinopathies: alpha synuclein as a driving force in neurodegenerative comorbidities. Translational Neurodegeneration, 2019, 8, 28.	3.6	70
23	Synchrotron XRF imaging of Alzheimer's disease basal ganglia reveals linear dependence of high-field magnetic resonance microscopy on tissue iron concentration. Journal of Neuroscience Methods, 2019, 319, 28-39.	1.3	10
24	WHAT'S OLD IS NEW: USING ARTIFICIAL INTELLIGENCE TO ACCELERATE DISCOVERY OF NEW TREATMENTS. Innovation in Aging, 2019, 3, S16-S17.	0.0	0
25	Clustering of motor and nonmotor traits in leucineâ€rich repeat kinase 2 G2019S Parkinson's disease nonparkinsonian relatives: A multicenter family study. Movement Disorders, 2018, 33, 960-965.	2.2	12
26	Lymphatic vasculature in human dural superior sagittal sinus: Implications for neurodegenerative proteinopathies. Neuroscience Letters, 2018, 665, 18-21.	1.0	33
27	Investigating Voice as a Biomarker for Leucine-Rich Repeat Kinase 2-Associated Parkinson's Disease. Journal of Parkinson's Disease, 2018, 8, 503-510.	1.5	18
28	Regulation of myeloid cell phagocytosis by LRRK2 via WAVE2 complex stabilization is altered in Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5164-E5173.	3.3	83
29	Immunohistochemical Method and Histopathology Judging for the Systemic Synuclein Sampling Study (S4). Journal of Neuropathology and Experimental Neurology, 2018, 77, 793-802.	0.9	32
30	Actigraphy Detects Greater Intra-Individual Variability During Gait in Non-Manifesting LRRK2 Mutation Carriers. Journal of Parkinson's Disease, 2018, 8, 131-139.	1.5	10
31	Heart rate variability in leucineâ€rich repeat kinase 2â€associated Parkinson's disease. Movement Disorders, 2017, 32, 610-614.	2.2	18
32	AAV1/2-induced overexpression of A53T-α-synuclein in the substantia nigra results in degeneration of the nigrostriatal system with Lewy-like pathology and motor impairment: a new mouse model for Parkinson's disease. Acta Neuropathologica Communications, 2017, 5, 11.	2.4	105
33	The Systemic Synuclein Sampling Study: toward a biomarker for Parkinson's disease. Biomarkers in Medicine, 2017, 11, 359-368.	0.6	50
34	α-Synuclein-Based Animal Models of Parkinson's Disease: Challenges and Opportunities in a New Era. Trends in Neurosciences, 2016, 39, 750-762.	4.2	120
35	Deep brain stimulation of the subthalamic nucleus preferentially alters the translational profile of striatopallidal neurons in an animal model of Parkinson's disease. Frontiers in Cellular Neuroscience, 2015, 9, 221.	1.8	16
36	Colonic mucosal α-synuclein lacks specificity as a biomarker for Parkinson disease. Neurology, 2015, 84, 609-616.	1.5	130

NAOMI P VISANJI

#	Article	IF	CITATIONS
37	Gastrointestinal dysfunction in Parkinson's disease. Lancet Neurology, The, 2015, 14, 625-639.	4.9	653
38	The relevance of pre-motor symptoms in Parkinson's disease. Expert Review of Neurotherapeutics, 2015, 15, 1205-1217.	1.4	29
39	Tumor Necrosis Factorâ€Î± Underlies Loss of Cortical Dendritic Spine Density in a Mouse Model of Congestive Heart Failure. Journal of the American Heart Association, 2015, 4, .	1.6	41
40	Reply to: Gray et al. Movement Disorders, 2014, 29, 1225-1226.	2.2	1
41	Alimentary, my dear Watson? The challenges of enteric αâ€synuclein as a Parkinson's disease biomarker. Movement Disorders, 2014, 29, 444-450.	2.2	74
42	Novel transgenic technology reveals several molecular adaptations and potential therapeutic targets in the direct pathway in levodopaâ€induced dyskinesia. Movement Disorders, 2014, 29, 721-721.	2.2	1
43	The prion hypothesis in Parkinson's disease: Braak to the future. Acta Neuropathologica Communications, 2013, 1, 2.	2.4	205
44	α-Synuclein Membrane Association Is Regulated by the Rab3a Recycling Machinery and Presynaptic Activity*. Journal of Biological Chemistry, 2013, 288, 7438-7449.	1.6	96
45	Iron Deficiency in Parkinsonism: Region-Specific Iron Dysregulation in Parkinson's Disease and Multiple System Atrophy. Journal of Parkinson's Disease, 2013, 3, 523-537.	1.5	46
46	Reconciling Braak's model of Parkinson's disease with a prion-like spread of alpha synuclein pathology. Basal Ganglia, 2012, 2, 167-170.	0.3	2
47	A proteomic analysis of pediatric seizure cases associated with astrocytic inclusions. Epilepsia, 2012, 53, e50-4.	2.6	17
48	Increased levels of 5â€HT _{1A} receptor binding in ventral visual pathways in Parkinson's disease. Movement Disorders, 2012, 27, 735-742.	2.2	23
49	Effect of Ser-129 Phosphorylation on Interaction of α-Synuclein with Synaptic and Cellular Membranes. Journal of Biological Chemistry, 2011, 286, 35863-35873.	1.6	49
50	Neuropsychiatric Behaviors in the MPTP Marmoset Model of Parkinson's Disease. Canadian Journal of Neurological Sciences, 2010, 37, 86-95.	0.3	63
51	Increased 5â€HT _{2A} receptors in the temporal cortex of parkinsonian patients with visual hallucinations. Movement Disorders, 2010, 25, 1399-1408.	2.2	128
52	Dopamine D3 receptor stimulation underlies the development of L-DOPA-induced dyskinesia in animal models of Parkinson's disease. Neurobiology of Disease, 2009, 35, 184-192.	2.1	86
53	Receptorâ€activity modifying protein 1 expression is increased in the striatum following repeated <scp>L</scp> â€DOPA administration in a 6â€hydroxydopamine lesioned rat model of Parkinson's disease. Synapse, 2008, 62, 310-313.	0.6	8
54	The nociceptin/orphanin FQ (NOP) receptor antagonist Jâ€113397 enhances the effects of levodopa in the MPTPâ€lesioned nonhuman primate model of Parkinson's disease. Movement Disorders, 2008, 23, 1922-1925.	2.2	37

NAOMI P VISANJI

#	Article	IF	CITATIONS
55	PYM50028, a novel, orally active, nonpeptide neurotrophic factor inducer, prevents and reverses neuronal damage induced by MPP ⁺ in mesencephalic neurons and by MPTP in a mouse model of Parkinson's disease. FASEB Journal, 2008, 22, 2488-2497.	0.2	74
56	Dietary resveratrol administration increases MnSOD expression and activity in mouse brain. Biochemical and Biophysical Research Communications, 2008, 372, 254-259.	1.0	110
57	Targeted delivery of an Mecp2 transgene to forebrain neurons improves the behavior of female Mecp2-deficient mice. Human Molecular Genetics, 2008, 17, 1386-1396.	1.4	92
58	Actions at sites other than D3 receptors mediate the effects of BP897 on I-DOPA-induced hyperactivity in monoamine-depleted rats. Experimental Neurology, 2006, 202, 85-92.	2.0	13
59	Histamine H3 receptor agonists reduce L-dopa-induced chorea, but not dystonia, in the MPTP-lesioned nonhuman primate model of Parkinson's disease. Movement Disorders, 2006, 21, 839-846.	2.2	52
60	Pharmacological characterization of psychosis-like behavior in the MPTP-lesioned nonhuman primate model of Parkinson's disease. Movement Disorders, 2006, 21, 1879-1891.	2.2	97
61	Dopamine Receptor Agonists and Levodopa and Inducing Psychosis-Like Behavior in the MPTP Primate Model of Parkinson Disease. Archives of Neurology, 2006, 63, 1343.	4.9	51