Steven A Trewick

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4636474/publications.pdf

Version: 2024-02-01

117 4,521 papers citations

31 h-index 64 g-index

118 all docs 118 docs citations

118 times ranked 5143 citing authors

#	Article	IF	CITATIONS
1	Lack of assortative mating might explain reduced phenotypic differentiation where two grasshopper species meet. Journal of Evolutionary Biology, 2022, 35, 509-519.	1.7	6
2	Unrestricted gene flow between two subspecies of translocated brushtail possums (Trichosurus) Tj ETQq0 0 0 rg	BT/Overlo	ock 10 Tf 50 7
3	Chemical Ecology and Olfaction in Short-Horned Grasshoppers (Orthoptera: Acrididae). Journal of Chemical Ecology, 2022, 48, 121-140.	1.8	13
4	Climate change and alpine-adapted insects: modelling environmental envelopes of a grasshopper radiation. Royal Society Open Science, 2022, 9, 211596.	2.4	16
5	Relationships among body size components of three flightless New Zealand grasshopper species (Orthoptera, Acrididae) and their ecological applications. Journal of Orthoptera Research, 2022, 31, 91-103.	1.0	2
6	Spatial Variation of Acanthophlebia cruentata (Ephemeroptera), a Mayfly Endemic to Te Ika-a-MÄui—North Island of Aotearoa, New Zealand. Insects, 2022, 13, 567.	2.2	O
7	Ecology and systematics of the wine wētĕand allied species, with description of four new Hemiandrus species. New Zealand Journal of Zoology, 2021, 48, 47-80.	1.1	4
8	Genetic Variation in the Glycoprotein B Sequence of Equid Herpesvirus 5 among Horses of Various Breeds at Polish National Studs. Pathogens, 2021, 10, 322.	2.8	3
9	A new species of large Hemiandrus ground wētĕ(Orthoptera: Anostostomatidae) from North Island, New Zealand. Zootaxa, 2021, 4942, zootaxa.4942.2.4.	0.5	4
10	Climate and ice in the last glacial maximum explain patterns of isolation by distance inferred for alpine grasshoppers. Insect Conservation and Diversity, 2021, 14, 568-581.	3.0	7
11	Generation of large mitochondrial and nuclear nucleotide sequences and phylogenetic analyses using high-throughput short-read datasets for endangered Placostylinae snails of the southwest Pacific. Molluscan Research, 2021, 41, 243-253.	0.7	2
12	Patterns of regional endemism among New Zealand invertebrates. New Zealand Journal of Zoology, 2020, 47, 1-19.	1.1	7
13	Phylogenetic topology and timing of New Zealand olive shells are consistent with punctuated equilibrium. Journal of Zoological Systematics and Evolutionary Research, 2020, 58, 209-220.	1.4	2
14	Lineage Identification Affects Estimates of Evolutionary Mode in Marine Snails. Systematic Biology, 2020, 69, 1106-1121.	5.6	2
15	An alpine grasshopper radiation older than the mountains, on KĕTiritiri o te Moana (Southern Alps) of Aotearoa (New Zealand). Molecular Phylogenetics and Evolution, 2020, 147, 106783.	2.7	20
16	Convergent morphological responses to loss of flight in rails (Aves: Rallidae). Ecology and Evolution, 2020, 10, 6186-6207.	1.9	9
17	Geometric morphometrics and machine learning challenge currently accepted species limits of the land snail Placostylus (Pulmonata: Bothriembryontidae) on the Isle of Pines, New Caledonia. Journal of Molluscan Studies, 2020, 86, 35-41.	1.2	12
18	Contrasting patterns of diversification in a bird family (Aves: Gruiformes: Rallidae) are revealed by analysis of geospatial distribution of species and phylogenetic diversity. Ecography, 2019, 42, 500-510.	4.5	11

#	Article	IF	CITATIONS
19	Loss and gain of sexual reproduction in the same stick insect. Molecular Ecology, 2019, 28, 3929-3941.	3.9	16
20	Spatial genetics of a high elevation lineage of Rhytididae land snails in New Zealand: the Powelliphanta Kawatiri complex. Molluscan Research, 2019, 39, 280-289.	0.7	3
21	Tuatara and a new morphometric dataset for Rhynchocephalia: Comments on Herreraâ€Flores <i>etÂal</i> Palaeontology, 2019, 62, 321-334.	2.2	6
22	Diversity and distribution of Pleioplectron Hutton cave wētĕ(Orthoptera: Rhaphidophoridae:) Tj ETQq0 0 0 rgBT European Journal of Taxonomy, 2019, , .	/Overlock 0.6	10 Tf 50 62 3
23	Anthropogenic cause of range shifts and gene flow between two grasshopper species revealed by environmental modelling, geometric morphometrics and population genetics. Insect Conservation and Diversity, 2018, 11, 415-434.	3.0	16
24	Genome statistics and phylogenetic reconstructions for Southern Hemisphere whelks (Gastropoda:) Tj ETQq0 0 0	rgBT /Ove	rlock 10 Tf 5
25	Phylogeography of the Chilean red cricket Cratomelus armatus (Orthoptera: Anostostomatidae) reveals high cryptic diversity in central Chile. Biological Journal of the Linnean Society, 2018, 123, 712-727.	1.6	15
26	First detection of Wolbachia in the New Zealand biota. PLoS ONE, 2018, 13, e0195517.	2.5	6
27	Genetic structure and shell shape variation within a rocky shore whelk suggest both diverging and constraining selection with gene flow. Biological Journal of the Linnean Society, 2018, , .	1.6	2
28	Evolutionary lineages of marine snails identified using molecular phylogenetics and geometric morphometric analysis of shells. Molecular Phylogenetics and Evolution, 2018, 127, 626-637.	2.7	16
29	Reinstatement of the New Zealand cave wētĕgenus Miotopus Hutton (Orthoptera: Rhaphidophoridae) and description of a new species. European Journal of Taxonomy, 2018, , .	0.6	3
30	Geometric morphometric analysis reveals that the shells of male and female siphon whelks <i>Penion chathamensis</i> are the same size and shape. Molluscan Research, 2017, 37, 194-201.	0.7	15
31	Effects of larval crowding and nutrient limitation on male phenotype, reproductive investment and strategy in Ephestia kuehniella Zeller (Insecta: Lepidoptera). Journal of Stored Products Research, 2017, 71, 64-71.	2.6	6
32	Closing the gap: Avian lineage splits at a young, narrow seaway imply a protracted history of mixed population response. Molecular Ecology, 2017, 26, 5752-5772.	3.9	12
33	A phylogeny of Southern Hemisphere whelks (Gastropoda: Buccinulidae) and concordance with the fossil record. Molecular Phylogenetics and Evolution, 2017, 114, 367-381.	2.7	26
34	Interisland gene flow among populations of the buffâ€banded rail (Aves: Rallidae) and its implications for insular endemism in Oceania. Journal of Avian Biology, 2017, 48, 679-690.	1.2	12
35	Explaining large mitochondrial sequence differences within a population sample. Royal Society Open Science, 2017, 4, 170730.	2.4	33
36	Genetic distinctiveness of the Waikawa Island mouse population indicates low rate of dispersal from mainland New Zealand. , $2017,41,\ldots$		1

#	Article	IF	CITATIONS
37	Lineages, splits and divergence challenge whether the terms anagenesis and cladogenesis are necessary. Biological Journal of the Linnean Society, 2016, 117, 165-176.	1.6	24
38	Little or no gene flow despite F ₁ hybrids at two interspecific contact zones. Ecology and Evolution, 2016, 6, 2390-2404.	1.9	9
39	Speciation through the looking-glass. Biological Journal of the Linnean Society, 2016, , .	1.6	1
40	Spatial size dimorphism in New Zealand's last endemic raptor, the KÄrearea Falco novaeseelandiae, coincides with a narrow sea strait. Ibis, 2016, 158, 747-761.	1.9	6
41	Three new ground wētĕspecies and a redescription ofHemiandrus maculifrons. New Zealand Journal of Zoology, 2016, 43, 363-383.	1.1	5
42	Transâ€equatorial range of a land bird lineage (Aves: Rallidae) from tropical forests to subantarctic grasslands. Journal of Avian Biology, 2016, 47, 219-226.	1.2	9
43	Placing the Fijian Honeyeaters within the meliphagid radiation: implications for origins and conservation. Pacific Conservation Biology, 2016, 22, 262.	1.0	2
44	Genetic diversity and gene flow in a rare New Zealand skink despite fragmented habitat in a volcanic landscape. Biological Journal of the Linnean Society, 2016, 119, 37-51.	1.6	7
45	Phylogenetics and Conservation in New Zealand: The Long and the Short of It. Topics in Biodiversity and Conservation, 2016, , 81-97.	1.0	5
46	What Is the Meaning of Extreme Phylogenetic Diversity? The Case of Phylogenetic Relict Species. Topics in Biodiversity and Conservation, 2016, , 99-115.	1.0	18
47	Sticky Genomes: Using NGS Evidence to Test Hybrid Speciation Hypotheses. PLoS ONE, 2016, 11, e0154911.	2.5	8
48	Correlation between shell phenotype and local environment suggests a role for natural selection in the evolution of <i>Placostylus</i> snails. Molecular Ecology, 2015, 24, 4205-4221.	3.9	36
49	Improved resolution of cave weta diversity (Orthoptera: Rhaphidophoridae): ecological implications for Te Paki, Far North, New Zealand. New Zealand Journal of Zoology, 2015, 42, 1-16.	1.1	5
50	Intercontinental island hopping: Colonization and speciation of the grasshopper genus Phaulacridium (Orthoptera: Acrididae) in Australasia. Zoologischer Anzeiger, 2015, 255, 71-79.	0.9	7
51	Comparative cytogenetics of North Island tree wētĕin sympatry. New Zealand Journal of Zoology, 2015, 42, 73-84.	1.1	3
52	Elevational variation in adult body size and growth rate but not in metabolic rate in the tree weta Hemideina crassidens. Journal of Insect Physiology, 2015, 75, 30-38.	2.0	13
53	Dispersal and speciation in purple swamphens (Rallidae: <i>Porphyrio</i>). Auk, 2015, 132, 140-155.	1.4	42
54	Fifteen into Three Does Go: Morphology, Genetics and Genitalia Confirm Taxonomic Inflation of New Zealand Beetles (Chrysomelidae: Eucolaspis). PLoS ONE, 2015, 10, e0143258.	2.5	4

#	Article	IF	CITATIONS
55	A new genus for the Lesser Moorhen Gallinula angulata Sundevall, 1850 (Aves, Rallidae). European Journal of Taxonomy, 2015, , .	0.6	2
56	Eocene Diversification of Crown Group Rails (Aves: Gruiformes: Rallidae). PLoS ONE, 2014, 9, e109635.	2.5	27
57	Morphological differentiation despite gene flow in an endangered grasshopper. BMC Evolutionary Biology, 2014, 14, 216.	3.2	16
58	Species Radiation of Carabid Beetles (Broscini: Mecodema) in New Zealand. PLoS ONE, 2014, 9, e86185.	2.5	13
59	Shifting ranges of two tree weta species (<i><scp>H</scp>emideina</i> spp.): competitive exclusion and changing climate. Journal of Biogeography, 2014, 41, 524-535.	3.0	42
60	Deep global evolutionary radiation in birds: Diversification and trait evolution in the cosmopolitan bird family Rallidae. Molecular Phylogenetics and Evolution, 2014, 81, 96-108.	2.7	74
61	Convergent local adaptation in size and growth rate but not metabolic rate in a pair of parapatric Orthoptera species. Biological Journal of the Linnean Society, 2014, 113, 123-135.	1.6	14
62	Biogeography Off the Tracks. Systematic Biology, 2013, 62, 494-498.	5.6	35
63	Molecular evolution and the latitudinal biodiversity gradient. Heredity, 2013, 110, 501-510.	2.6	89
64	Multiple lines of evidence suggest mosaic polyploidy in the hybrid parthenogenetic stick insect lineage <i>Acanthoxyla</i> . Insect Conservation and Diversity, 2013, 6, 537-548.	3.0	12
65	New Zealand ground wētĕ(Anostostomatidae: <i>Hemiandrus</i>): descriptions of two species with notes on their biology. New Zealand Journal of Zoology, 2013, 40, 314-329.	1.1	12
66	Fire and slice: palaeogeography for biogeography at New Zealand's North Island/South Island juncture. Journal of the Royal Society of New Zealand, 2012, 42, 153-183.	1.9	85
67	Shape and sound reveal genetic cohesion not speciation in the New Zealand orthopteran, Hemiandrus pallitarsis, despite high mitochondrial DNA divergence. Biological Journal of the Linnean Society, 2012, 105, 169-186.	1.6	17
68	Artefacts, biology and bias in museum collection research. Molecular Ecology, 2012, 21, 3103-3109.	3.9	21
69	DNA and Morphology Unite Two Species and 10 Million Year Old Fossils. PLoS ONE, 2012, 7, e52083.	2.5	10
70	Hypothesis testing in biogeography. Trends in Ecology and Evolution, 2011, 26, 66-72.	8.7	281
71	The Invertebrate Life of New Zealand: A Phylogeographic Approach. Insects, 2011, 2, 297-325.	2.2	41
72	Exploring Phylogeographic Congruence in a Continental Island System. Insects, 2011, 2, 369-399.	2.2	20

#	Article	IF	CITATIONS
73	Does predation result in adult sex ratio skew in a sexually dimorphic insect genus?. Journal of Evolutionary Biology, 2011, 24, 2321-2328.	1.7	18
74	Mutualism or opportunism? Tree fuchsia (<i>Fuchsia excorticata</i>) and tree weta (<i>Hemideina</i>) interactions. Austral Ecology, 2011, 36, 261-268.	1.5	11
75	Population structure and biogeography of Hemiphaga pigeons (Aves: Columbidae) on islands in the New Zealand region. Journal of Biogeography, 2011, 38, 285-298.	3.0	25
76	Phylogenetic information of genes, illustrated with mitochondrial data from a genus of gastropod molluscs. Biological Journal of the Linnean Society, 2011, 104, 770-785.	1.6	4
77	Vicars, tramps and assembly of the New Zealand avifauna: a review of molecular phylogenetic evidence. Ibis, 2010, 152, 226-253.	1.9	52
78	Geographic parthenogenesis and the common tea-tree stick insect of New Zealand. Molecular Ecology, 2010, 19, 1227-1238.	3.9	48
79	Status of the New Zealand cave weta (Rhaphidophoridae) genera Pachyrhamma, Gymnoplectron and Turbottoplectron. Invertebrate Systematics, 2010, 24, 131.	1.3	10
80	Cave Crickets and Cave Weta (Orthoptera, Rhaphidophoridae) from the Southern End of the World: A Molecular Phylogeny Test of Biogeographical Hypotheses. Journal of Orthoptera Research, 2010, 19, 121-130.	1.0	22
81	New Zealand phylogeography: evolution on a small continent. Molecular Ecology, 2009, 18, 3548-3580.	3.9	217
82	Taxonomic and conservation status of a newly discovered giant landsnail from Mount Augustus, New Zealand. Conservation Genetics, 2008, 9, 1563-1575.	1.5	10
83	Are you my mother? Phylogenetic analysis reveals orphan hybrid stick insect genus is part of a monophyletic New Zealand clade. Molecular Phylogenetics and Evolution, 2008, 48, 799-808.	2.7	30
84	DNA Barcoding is not enough: mismatch of taxonomy and genealogy in New Zealand grasshoppers (Orthoptera: Acrididae) Cladistics, 2008, 24, 240-254.	3.3	91
85	Bird evolution: testing the metaves clade with six new mitochondrial genomes. BMC Evolutionary Biology, 2008, 8, 20.	3.2	70
86	The age and origin of the Pacific islands: a geological overview. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 3293-3308.	4.0	266
87	<i>Powelliphanta augusta</i> , a new species of land snail, with a description of its former habitat, Stockton coal plateau, New Zealand. Journal of the Royal Society of New Zealand, 2008, 38, 163-186.	1.9	17
88	Diversification of New Zealand weta (Orthoptera: Ensifera: Anostostomatidae) and their relationships in Australasia. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 3427-3437.	4.0	47
89	Introduction. Evolution on Pacific islands: Darwin's legacy. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 3289-3291.	4.0	3
90	Evolution of New Zealand's terrestrial fauna: a review of molecular evidence. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 3319-3334.	4.0	114

#	Article	IF	CITATIONS
91	GUEST EDITORIAL: Hello New Zealand. Journal of Biogeography, 2006, 34, 1-6.	3.0	138
92	Fewer species of Argosarchus and Clitarchus stick insects (Phasmida, Phasmatinae): evidence from nuclear and mitochondrial DNA sequence data. Zoologica Scripta, 2005, 34, 483-491.	1.7	18
93	Hybrid origin of a parthenogenetic genus?. Molecular Ecology, 2005, 14, 2133-2142.	3.9	37
94	After the deluge: mitochondrial DNA indicates Miocene radiation and Pliocene adaptation of tree and giant weta (Orthoptera: Anostostomatidae). Journal of Biogeography, 2005, 32, 295-309.	3.0	71
95	Chloroplast DNA diversity of <i>Hieracium Pilosella</i> (Asteraceae) introduced to New Zealand: reticulation, hybridization, and invasion. American Journal of Botany, 2004, 91, 73-85.	1.7	35
96	Phylogenetics of New Zealand's tree, giant and tusked weta (Orthoptera: Anostostomatidae): evidence from mitochondrial DNA. Journal of Orthoptera Research, 2004, 13, 185-196.	1.0	23
97	Interspecific hybridization among Hieracium species in New Zealand: evidence from flow cytometry. Heredity, 2004, 93, 34-42.	2.6	50
98	Phylogenetic and biosystematic relationships in four highly disjunct polyploid complexes in the subgenera and in (Aspleniaceae). Organisms Diversity and Evolution, 2002, 2, 299-311.	1.6	40
99	Polyploidy, phylogeography and Pleistocene refugia of the rockfern Asplenium ceterach: evidence from chloroplast DNA. Molecular Ecology, 2002, 11, 2003-2012.	3.9	167
100	Scree weta phylogeography: Surviving glaciation and implications for Pleistocene biogeography in New Zealand. New Zealand Journal of Zoology, 2001, 28, 291-298.	1.1	40
101	Chromosome races with Pliocene origins: evidence from mtDNA. Heredity, 2001, 86, 303-312.	2.6	47
102	Identity of an endangered grasshopper (Acrididae: Brachaspis): Taxonomy, molecules and conservation., 2001, 2, 233-243.		19
103	BRIDGING THE "BEECH-GAP": NEW ZEALAND INVERTEBRATE PHYLOGEOGRAPHY IMPLICATES PLEISTOCENE GLACIATION AND PLIOCENE ISOLATION. Evolution; International Journal of Organic Evolution, 2001, 55, 2170-2180.	2.3	110
104	Finding Fault with Vicariance: A Critique of Heads (1998). Systematic Biology, 2001, 50, 602-609.	5.6	28
105	Finding Fault with Vicariance: A Critique of Heads (1998). Systematic Biology, 2001, 50, 602-609.	5.6	13
106	BRIDGING THE "BEECH-GAP― NEW ZEALAND INVERTEBRATE PHYLOGEOGRAPHY IMPLICATES PLEISTOCENE GLACIATION AND PLIOCENE ISOLATION. Evolution; International Journal of Organic Evolution, 2001, 55, 2170.	2.3	96
107	Characterization of a hybrid zone between two chromosomal races of the weta Hemideina thoracica following a geologically recent volcanic eruption. Heredity, 2000, 85, 586-592.	2.6	28
108	Molecular evidence for dispersal rather than vicariance as the origin of flightless insect species on the Chatham Islands, New Zealand. Journal of Biogeography, 2000, 27, 1189-1200.	3.0	112

#	Article	IF	CITATIONS
109	Phylogeographical pattern correlates with Pliocene mountain building in the alpine scree weta (Orthoptera, Anostostomatidae). Molecular Ecology, 2000, 9, 657-666.	3.9	120
110	A new weta from the Chatham Islands (Orthoptera: Raphidophoridae). Journal of the Royal Society of New Zealand, 1999, 29, 165-173.	1.9	5
111	Sympatric cryptic species in New Zealand Onychophora. Biological Journal of the Linnean Society, 1998, 63, 307-329.	1.6	855
112	Sympatric cryptic species in New Zealand Onychophora. Biological Journal of the Linnean Society, 1998, 63, 307-329.	1.6	11
113	Sympatric flightless rails <i>Gallirallus dieffenbachii</i> li>and <i>G. modestus</i> on the Chatham Islands, New Zealand; morphometrics and alternative evolutionary scenarios. Journal of the Royal Society of New Zealand, 1997, 27, 451-464.	1.9	27
114	On the skewed sex ratio of the Kakapo Strigops habroptilus: sexual and natural selection in opposition? Ibis, 1997, 139, 652-663.	1.9	16
115	On the distribution of tree weta in the North Island, New Zealand. Journal of the Royal Society of New Zealand, 1995, 25, 485-493.	1.9	30
116	Conservation of på«på« whakarongotaua Â-the snail that listens for the war party. Ethnobiology and Conservation, 0, , .	0.0	0
117	Effects of population density on adult morphology and life-history traits of female Mediterranean flour moth, Ephestia kuehniella (Lepidoptera: Pyralidae). European Journal of Entomology, 0, 119, 191-200.	1.2	1