Chuan-Le Xiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4636111/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Immune cell profiling of COVID-19 patients in the recovery stage by single-cell sequencing. Cell Discovery, 2020, 6, 31.	3.1	644
2	N6-Methyladenine DNA Modification in the Human Genome. Molecular Cell, 2018, 71, 306-318.e7.	4.5	439
3	MECAT: fast mapping, error correction, and de novo assembly for single-molecule sequencing reads. Nature Methods, 2017, 14, 1072-1074.	9.0	357
4	Detection of DNA base modifications by deep recurrent neural network on Oxford Nanopore sequencing data. Nature Communications, 2019, 10, 2449.	5.8	237
5	A human circulating immune cell landscape in aging and COVID-19. Protein and Cell, 2020, 11, 740-770.	4.8	179
6	Efficient assembly of nanopore reads via highly accurate and intact error correction. Nature Communications, 2021, 12, 60.	5.8	166
7	Phosphoproteomic Analysis Reveals the Multiple Roles of Phosphorylation in Pathogenic Bacterium <i>Streptococcus pneumoniae</i> . Journal of Proteome Research, 2010, 9, 275-282.	1.8	164
8	DeepSignal: detecting DNA methylation state from Nanopore sequencing reads using deep-learning. Bioinformatics, 2019, 35, 4586-4595.	1.8	158
9	MethSMRT: an integrative database for DNA N6-methyladenine and N4-methylcytosine generated by single-molecular real-time sequencing. Nucleic Acids Research, 2017, 45, D85-D89.	6.5	111
10	Transfer RNAs Mediate the Rapid Adaptation of Escherichia coli to Oxidative Stress. PLoS Genetics, 2015, 11, e1005302.	1.5	93
11	CobB regulates <i>Escherichia coli</i> chemotaxis by deacetylating the response regulator CheY. Molecular Microbiology, 2010, 76, 1162-1174.	1.2	81
12	Global phosphoproteomic effects of natural tyrosine kinase inhibitor, genistein, on signaling pathways. Proteomics, 2010, 10, 976-986.	1.3	80
13	MDR: an integrative DNA N6-methyladenine and N4-methylcytosine modification database for Rosaceae. Horticulture Research, 2019, 6, 78.	2.9	77
14	Phosphoproteome analysis of the pathogenic bacterium <i>Helicobacter pylori</i> reveals overâ€representation of tyrosine phosphorylation and multiply phosphorylated proteins. Proteomics, 2011, 11, 1449-1461.	1.3	59
15	Genome-wide detection of cytosine methylations in plant from Nanopore data using deep learning. Nature Communications, 2021, 12, 5976.	5.8	47
16	Subcellular proteomics revealed the epithelial–mesenchymal transition phenotype in lung cancer. Proteomics, 2011, 11, 429-439.	1.3	44
17	Putative copper―and zincâ€binding motifs in <i>Streptococcus pneumoniae</i> identified by immobilized metal affinity chromatography and mass spectrometry. Proteomics, 2011, 11, 3288-3298.	1.3	42
18	FANSe2: A Robust and Cost-Efficient Alignment Tool for Quantitative Next-Generation Sequencing Applications. PLoS ONE, 2014, 9, e94250.	1.1	42

CHUAN-LE XIAO

#	Article	IF	CITATIONS
19	Transcriptomic and proteomic approach to studying SNXâ€2112â€induced K562 cells apoptosis and antiâ€leukemia activity in K562â€NOD/SCID mice. FEBS Letters, 2009, 583, 1859-1866.	1.3	40
20	FANSe: an accurate algorithm for quantitative mapping of large scale sequencing reads. Nucleic Acids Research, 2012, 40, e83-e83.	6.5	39
21	Putative cobalt- and nickel-binding proteins and motifs in Streptococcus pneumoniae. Metallomics, 2013, 5, 928.	1.0	37
22	Quantitative Phosphoproteomics of Proteasome Inhibition in Multiple Myeloma Cells. PLoS ONE, 2010, 5, e13095.	1.1	28
23	Compacting a synthetic yeast chromosome arm. Genome Biology, 2021, 22, 5.	3.8	28
24	Phosphoproteomic analysis of primary human multiple myeloma cells. Journal of Proteomics, 2010, 73, 1381-1390.	1.2	25
25	Bacterial Proteome of Streptococcus pneumoniae Through Multidimensional Separations Coupled with LC-MS/MS. OMICS A Journal of Integrative Biology, 2011, 15, 477-482.	1.0	22
26	Integrated single-cell analysis revealed immune dynamics during Ad5-nCoV immunization. Cell Discovery, 2021, 7, 64.	3.1	22
27	Comparative proteomic analysis to discover potential therapeutic targets in human multiple myeloma. Proteomics - Clinical Applications, 2009, 3, 1348-1360.	0.8	21
28	Phosphoproteomic Analysis of Protein Phosphorylation Networks in Tetrahymena thermophila, a Model Single-celled Organism. Molecular and Cellular Proteomics, 2014, 13, 503-519.	2.5	21
29	N6-Methyladenine DNA modification in Xanthomonas oryzae pv. oryzicola genome. Scientific Reports, 2018, 8, 16272.	1.6	18
30	Proteomic Analysis of Membrane Proteins from <i>Streptococcus pneumoniae</i> with Multiple Separation Methods Plus High Accuracy Mass Spectrometry. OMICS A Journal of Integrative Biology, 2011, 15, 683-694.	1.0	16
31	Characterization of Phosphoproteins in Gastric Cancer Secretome. OMICS A Journal of Integrative Biology, 2011, 15, 83-90.	1.0	15
32	Identification of novel signaling components in genistein-regulated signaling pathways by quantitative phosphoproteomics. Journal of Proteomics, 2011, 75, 695-707.	1.2	15
33	Applications and potentials of nanopore sequencing in the (epi)genome and (epi)transcriptome era. Innovation(China), 2021, 2, 100153.	5.2	15
34	Binomial Probability Distribution Model-Based Protein Identification Algorithm for Tandem Mass Spectrometry Utilizing Peak Intensity Information. Journal of Proteome Research, 2013, 12, 328-335.	1.8	14
35	N6-Methyladenine DNA Modification in the Woodland Strawberry (Fragaria vesca) Genome Reveals a Positive Relationship With Gene Transcription. Frontiers in Genetics, 2019, 10, 1288.	1.1	14
36	Phosphoproteome profile of human lung cancer cell line A549. Molecular BioSystems, 2011, 7, 472-479.	2.9	13

CHUAN-LE XIAO

#	Article	IF	CITATIONS
37	DNA N6-Methyladenosine modification role in transmitted variations from genomic DNA to RNA in Herrania umbratica. BMC Genomics, 2019, 20, 508.	1.2	11
38	A new method for measuring functional similarity of microRNAs. Journal of Integrated OMICS, 2011, 1, .	0.5	8
39	Lipoprotein FtsB in Streptococcus pyogenes Binds Ferrichrome in Two Steps with Residues Tyr137 and Trp204 as Critical Ligands. PLoS ONE, 2013, 8, e65682.	1.1	8
40	Low-cost, Low-bias and Low-input RNA-seq with High Experimental Verifiability based on Semiconductor Sequencing. Scientific Reports, 2017, 7, 1053.	1.6	8
41	ISOdb: A Comprehensive Database of Full-Length Isoforms Generated by Iso-Seq. International Journal of Genomics, 2018, 2018, 1-6.	0.8	8
42	Environmental Water and Sediment Microbial Communities Shape Intestine Microbiota for Host Health: The Central Dogma in an Anthropogenic Aquaculture Ecosystem. Frontiers in Microbiology, 2021, 12, 772149.	1.5	8
43	Identification of ubiquitinated proteins from human multiple myeloma U266 cells by proteomics. Biomedical and Environmental Sciences, 2011, 24, 422-30.	0.2	8
44	Dispec: A Novel Peptide Scoring Algorithm Based on Peptide Matching Discriminability. PLoS ONE, 2013, 8, e62724.	1.1	7
45	Detection of Abundant Proteins in Multiple Myeloma Cells by Proteomics. Journal of Proteomics and Bioinformatics, 2010, 03, 005-009.	0.4	6
46	Genomic Elucidation of a COVID-19 Resurgence and Local Transmission of SARS-CoV-2 in Guangzhou, China. Journal of Clinical Microbiology, 2021, 59, e0007921.	1.8	5
47	Editorial: Biomedical Data Visualization: Methods and Applications. Frontiers in Genetics, 2022, 13, 890775.	1.1	2
48	SCSit: A high-efficiency preprocessing tool for single-cell sequencing data from SPLiT-seq. Computational and Structural Biotechnology Journal, 2021, 19, 4574-4580.	1.9	1
49	A survey on <i>de novo</i> assembly methods for singleâ€molecular sequencing. Quantitative Biology, 2020, 8, 203-215	0.3	0
50	Genomic Elucidation of a COVID-19 Resurgence and Local Transmission of SARS-CoV-2 in Guangzhou, China. SSRN Electronic Journal, 0, , .	0.4	0