Yong-Jiang Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4635559/publications.pdf

Version: 2024-02-01

16	120	6	11
papers	citations	h-index	g-index
16	16	16	105
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Transport of Dynamic Biochemical Signals in Steady Flow in a Shallow Y-Shaped Microfluidic Channel: Effect of Transverse Diffusion and Longitudinal Dispersion. Journal of Biomechanical Engineering, 2013, 135, 121011.	1.3	22
2	A Microfluidic Micropipette Aspiration Device to Study Single-Cell Mechanics Inspired by the Principle of Wheatstone Bridge. Micromachines, 2019, 10, 131.	2.9	21
3	A Capillary-Evaporation Micropump for Real-Time Sweat Rate Monitoring with an Electrochemical Sensor. Micromachines, 2019, 10, 457.	2.9	15
4	Precise generation of dynamic biochemical signals by controlling the programmable pump in a Yâ€shaped microfluidic chip with a "christmas tree―inlet. Electrophoresis, 2020, 41, 883-890.	2.4	10
5	Transmission of dynamic biochemical signals in the shallow microfluidic channel: nonlinear modulation of the pulsatile flow. Microfluidics and Nanofluidics, 2018, 22, 1.	2.2	9
6	Separation of micro and subâ€micro diamagnetic particles in dual ferrofluid streams based on negative magnetophoresis. Electrophoresis, 2020, 41, 909-916.	2.4	9
7	Microfluidic focusing of microparticles utilizing negative magnetophoresis and oscillatory flow. Microfluidics and Nanofluidics, 2021, 25, $1.$	2.2	7
8	Breakup Dynamics of Semi-dilute Polymer Solutions in a Microfluidic Flow-focusing Device. Micromachines, 2020, 11, 406.	2.9	6
9	A microfluidic platform enabling real-time control of dynamic biochemical stimuli to biological cells. Journal of Micromechanics and Microengineering, 2020, 30, 095011.	2.6	5
10	A microfluidic system for precisely reproducing physiological blood pressure and wall shear stress to endothelial cells. Analyst, The, 2021, 146, 5913-5922.	3.5	5
11	Raman Spectroscopic Characterization of Polymerization Kinetics of Cyanoacrylate Embolic Glues for Vascular Embolization. Polymers, 2021, 13, 3362.	4.5	4
12	Transport of dynamic biochemical signals in a microfluidic single cell trapping channel with varying cross-sections. European Physical Journal E, 2019, 42, 33.	1.6	3
13	Deep-learning-assisted extraction of height-averaged velocity from scalar signal transport in a shallow microfluidic channel. Microfluidics and Nanofluidics, 2022, 26, 1.	2.2	3
14	Modeling of Endothelial Calcium Responses within a Microfluidic Generator of Spatio-Temporal ATP and Shear Stress Signals. Micromachines, 2021, 12, 161.	2.9	1
15	Transmission of Dynamic Biochemical Signals in a Variable Cross-section Microfluidic Channel*. , 2018, , .		O
16	A microfluidic generator of dynamic shear stress and biochemical signals based on autonomously oscillatory flow. Electrophoresis, 2021, 42, 2264-2272.	2.4	0